Cou	irse No.	Course Name	L-T-P -Credits	Year Introdu	of ction
E	E201	CIRCUITS AND NETWORKS	3-1-0-4	2016	
Prerequ	isite: Nil				
Course	Objectives:	LADIN		NA	
To learn	about various	techniques available to s	solve various types of circu	uits and net	tworks
To gain t	the capability	to synthesize a circuit fo	r a particular purpose.	A T	
Syllahus	AC Circuit 4	analysis(Steady State A(C Analysis) Network topo	logy Trans	sient
analysis		marysis(steady state m	e marysis), rection topo	iogy, main	
Laplace	transform pr	parties Transformed ci	reuite Two port networks	Symmetri	cal two
Laplace	tive networks	og filtera Network funct	iong Network Synthesis	, Symmetri	cal two
Evneet	ad autaama	as milers, network funct	ions, Network Synthesis		
Ability	to goly o on T	C and AC aircuita			
Ability	to solve any L	C and AC circuits			
Ability	to apply graph	Theory in solving netwo	JIKS		
ADIIITY	to apply Lapla	ice Transform to find tra	insient response		
Ability	to synthesize	networks			
T (D					
Text B	ook:				
1. H	layt and Kemmer	ly :Engineering Circuit A	nalysis, 8e, Mc Graw Hill	Education	ı, New
L D	Delhi, 2013.				
2 5	a dhalran an d C	hum Mahan Cinquita	a d Nature des Austrais en	1 Countly and	~ 5 . M ~
2. 5		onyam Monan- Circuits a	and Networks: Analysis an	a Synthesi	s, se, Mc
	fraw Hill Educ	cation,			
Data Bo	ok (Approve	d for use in the examin	ation): Nil		
Referen	ces:				
1. Siskand	C.S : Electrical	Circuits .McGraw Hill			
2. Joseph.	A. Edminister: T	heory and problems of Electr	ic circuits, TMH		
3. D Roy (Chaudhuri: Netwo	orks and Systems, New Age I	Publishers		
4. A . Cha	krabarti : Circuit	Theory (Analysis and Synthe	sis),Dhanpat <mark>Rai &Co</mark>		
5. Valkent	erg : Network A	nalysis, Prentice Hall of India			
6. B.R. Gu	ipta: Network Sy	stems and Analysis, S.Chand	& Company Itd		
Madada		Course	e Plan	Hanna	End
Module		Contents		Hours	End Sem
		20	14 //		Exam
		20	14		Marks
Ι	Network the	orems - Superposition th	neorem – Thevenin's	9 hours	15%
	theorem – No	orton's theorem – Recip	ro <mark>city Theore</mark> m –		
	Maximum po	ower transfer theorem -	dc and ac steady state		
	analysis – de	pendent and independen	t sources		
II	Network top	ology – graph tree incid	lence matrix – properties	9 hours	15%
	of incidence	matrix – fundamental cu	it sets – cut set matrix –	5 115013	10/0
	tie sets $-$ fun	damental tie sets $-$ tie se	t matrix _ relationshing		
	among incid	ence matrix out set matri	$\frac{1}{1}$ in $\frac{1}{2}$ is a tip set matrix		
	Kirchoff'a la	we in terms of network	in a lie set matrices		
	formation s la	ws in terms of network l	opological matrices –		
	formulation a	and solution of network	equations using		
	topological n	nethods			

	FIRST INTERNAL EXAMINATION				
III	Steady state and transient response – DC response &	9 hours	15%		
	sinusoidal response of RL, RC and RLC series circuits				
IV	Application of Laplace transform in transient analysis – RL,	10	15%		
	RC and RLC circuits (Series and Parallel circuits) – step and	hours			
	sinusoidal response				
	Transformed circuits – coupled circuits - dot convention -				
	transform impedance/admittance of RLC circuits with mutual	N.A.			
	coupling – mesh analysis and node analysis of transformed				
	circuits - solution of transformed circuits including mutually	A 1			
	coupled circuits in s-domain				
	SECOND INTERNAL EXAMINATION				
V	Two port networks – Z, Y, h, T parameters – relationship	9 hours	20%		
	between parameter sets – condition for symmetry &				
	reciprocity – interconnections of two port networks – driving				
	point and transfer immittance – $T-\pi$ transformation.				
VI	Network functions–Network synthesis-positive real functions	8 hours	20%		
	and Hurwitz polynomial-synthesis of one port network with				
	two kinds of elements-Foster form I&II-Cauer form I&II.				
	END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

014

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No	Course Name	L-T-P-Credits	Year of	Introduction			
EE202	Synchronous and Induction Machines	3-1-0-4		2016			
Prerequisite	NIL		1				
Course Ob	jectives						
То	give exposure to the students about the con-	ncepts of altern	nating curr	ent machines			
including	g the Constructional details, principle of opera	tion and perform	nance analy	/sis.			
Tol	earn the characteristics of induction machines	and to learn ho	w it can be	employed for			
various a	pplications.		K.A.				
Syllabus	APLADULI	SALA	IVI				
Alte	rnators – basic principle, constructional detail	s, armature win	dings, arma	ture reaction,			
voltage 1	egulation and determination of regulation by	different metho	ods; paralle	l operation of			
alternato	rs and synchronization; Synchronous motor	s – principle, j	performanc	e and power			
relations	; synchronous induction motors. 🦷 📃	IIY					
Indu	ction motors – basic principle, rotating	magnetic field,	construct	ional details,			
mechani	cal power and torque, performance analys	is, starting me	thods, bra	king, testing,			
equivale	nt circuit and circle diagrams; single phase ind	luction motors.					
Indu	ction generator – principle of operation.						
Expected (Dutcome						
Afte	r the successful completion of this course, the	students will be	e able to				
1.	dentify alternator types, and appreciate their p	erformance					
2.	determine the voltage regulation and analyse t	he performance	of alternate	ors			
3.	lescribe the principle of operation of synchror	nous motor and	different ap	plications.			
4.	describe the principle of operation of 3-phase i	induction motor	rs and selec	t appropriate			
	notor types for different applications.						
5.	analyse the performance of 3-phase induction	motors					
6.	amiliarize with principle of operation and app	plication of 1 -p	hase induc	tion motors.			
Toyt Dool			-				
1 Dim	he D.S. Electrical Machinery 7/2 Khones I	$\mathbf{h}_{\mathbf{h}}$					
$\begin{array}{ccc} 1. & \text{BIII} \\ 2 & \text{Nac} \end{array}$	ora P. S., <i>Electrical Machinery</i> , <i>i.e.</i> , Khanna F	ublishers, 2011	· aw Hill 20	06			
2. Reference	Rooks	nes, rata meor	aw 1111, 20				
1 Sav	M G The Performance and Design of A C	Machines C.B.	S Publisher	rs New			
Del	ni, 2002.			5,11011			
2. Fitz	gerald A. E., C. Kingsley and S. Umans, Elect	ric Machinery,	6/e, McGra	w Hill, 2003.			
3. Lan	gsdorf M. N., Theory of Alternating Current M	<i>lachinery</i> , Tata	McGraw H	Iill, 2001.			
4. Des	npande M. V., Electrical Machines, Prentice H	Hall India, New	Delhi, 201	1.			
5. Cha	rles I. Hubert, Electric Machines, Pearson, Ne	w Delhi 2007					
6. The	odore Wilde, <i>Electrical Machines</i> , <i>Drives and</i>	Power System,	Pearson Ec	l. Asia 2001.			
	Course Plan						
Module	Contents		Hours	Semester Exam Marks			
	Alternators - basic principle, constructional	features of					
	salient pole type and cylindrical type	alternators.					
I advantages of stationary armature. turbo-alternator. 8 hours		15%					
	Armature winding _ types of armature win	ding_ single		- '			
	aver double layer full nitched and short nited	hed winding					
	ayer, double layer, full pliched and short plich	ieu winding,					

	slot angle, pitch factor and distribution factor – numerical problems.		
	Effect of pitch factor on harmonics – advantages of short chorded winding, EMF Equation – numerical problems.		
	Harmonics in generated EMF – suppression of harmonics.		
Π	Performance of an alternator – Causes for voltage drop in alternators – armature resistance, armature leakage reactance – armature reaction, synchronous reactance, synchronous impedance, experimental determination – phasor diagram of a loaded alternator. Voltage regulation – EMF, MMF, ZPF and ASA methods –	9 hours	15%
	EIDST INTEDNAL EVAMINATION		
	FIRST INTERNAL EXAMINATION		
III	Theory of salient pole machine – Blondel's two reaction theory – direct axis and quadrature axis synchronous reactances – phasor diagram and determination of X_d and X_q by slip test. Parallel operation of alternators – necessity of parallel operation of alternators, methods of synchronisation– dark lamp method and bright lamp method, synchroscope, Synchronising current, synchronising power, synchronising torque. Effects of changing excitation of alternators, load sharing of two alternators in parallel operation.	9 hours	15%
IV	Synchronous motor – construction and principle of synchronous motor, methods of starting. Effects of excitation on armature current and power factor, v-curve and inverter v-curve, load angle, torque and power relationship, phasor diagram, losses and efficiency calculations. Three phase induction motor – constructional features, slip ring and cage types. Theory of induction motor with constant mutual flux, slip, phasor diagram, expression for mechanical power and torque, torque-slip characteristics, starting torque, full load and pull out torque, equivalent circuit.	9 hours	15%
	SECOND INTERNAL EXAMINATION	1	1
V	Circle diagrams – tests on induction motors for determination of equivalent circuit and circle diagram.	10 hours	20%

	Cogging, crawling and noise production in cage motors – remedial measures.				
	Double cage induction motor – principle, torque-slip curves.				
	Starting of induction motors – types of starters – DOL starter, autotransformer starter, star-delta starter, rotor				
	resistance starter – starting torque and starting current- numerical problems. Braking of induction motors – plugging, dynamic braking and regenerative braking (no numerical problems).				
	Speed control – stator voltage control, V/f control, rotor resistance control.				
VI	Induction generator – principle of operation, grid connected and self excited operation, comparison of induction generator with synchronous generators.grid comparison of operation.Synchronous induction motor – principle of operation.10 hours20%Single-phase induction motor – double field revolving theory, equivalent circuit, torque slip curve.10 hours20%Types of single phase induction motor – split phase, capacitor start, capacitor start and run types.Principle of shaded pole motor – applications.10 hours				
	END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Estd.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No.	Course Name	L-T-P -Credits	Year of Introduction
EE203	ANALOG ELECTRONICS CIRCUITS	3-1-0-4	2016
Prerequisite :	Nil		
Course Objec	tives		
 To implication 	part an in depth knowledge in electror	ic semiconductor devi	ices & circuits giving
import	ance to the various aspects of design &	analysis.	A
• To pro	ovide knowledge about different type	s amplifier & oscilla	tor circuits and their
design	TECHNIOLO	ALICA	
• To pro	ovide a thorough understanding of th	e operational amplif	ier circuits and their
functio	ns. IINIIVED	CITV	
Prerequisites	: N1l		DIT hissing AC
Syllabus Dio	ae clipping and clamping circuits and Z	ener voltage regulators	, BJI blasing, AC
response of B	T and EET amplifiers. Power amplifier	Blasing OI JFET and M	amplifiers
& Oscillator C	irenits	s using DJ1, recuback	amplificis
Operational A	mulifier basics and OP-AMP Circui	ts Wave form genera	ation using On-Amp
Multivibrators	using Timer IC 555.	is, where form genere	and using op mip,
Expected ou	tcome : Upon successful completion of	the course the students	will be able to
1. Design b	biasing scheme for transistor circuits		
2. Model B	JT and FET amplifier circuits		
3. Choose a	power amplifier with appropriate speci	fications for electronic	circuit applications
4. Design &	analyse oscillator circuits using BJT		
5. Choose C	Operational amplifier(OPAMP) for spec	ific applications includ	ing waveform
generatio	n.		
6. Design &	implement analog circuits using OPAN	APs	
T 4 D 1			
1 Molvir	A and D. I. Patas Electronic Princip	log 7/2 Toto McGrow	Hill 2010
$\frac{1}{2}$ Boyles	tad R L and L Nashelsky Electronic	Devices and Circuit Th	$\frac{1111}{2010}$
Z. Doyles Educat	ion India 2009	Sevices and circuit In	cory, 10/c, 1 carson
3. Choud	hury R., Linear Integrated Circuits, New	v Age International Pul	olishers, 2008.
01 011000			
Data Book (Approved for use in the examination): Nil	
References:	2014		
1 Floyd '	T. L. Fundamentals of Analog Circuits	Pearson Education 2	012
2. Robert	T. Paynter and John Clemons, Paynter'	s Introductory electron	ic devices & circuits.
Prentic	the Hall Career & Technology, New Jerse	ev.	
3. Bell D	. A., Electronic Devices and Circuits, Pr	entice Hall of India, 20	007.
4. Millma	an J. and C. C. Halkias, Integrated Elect	ronics: Analog and Dig	gital Circuits and
System	ns, Tata McGraw-Hill, 2010.		
5. Streetn	nan B. G. and S. Banerjee, Solid State E	electronic Devices, Pea	rson Education Asia,
2006.			
6. Gayak	ward R. A., Op-Amps and Linear Integr	ated Circuits, PHI Lea	rning Pvt. Ltd., 2012.

	Course Plan		
Module	Contents	Hours	Sem.ExamMarks
	Diode Circuits : Diode clipping circuits - Single level and two level clippers - Clamping circuits – Design of Zener Voltage Regulators.		
Ι	 Bipolar Junction Transistors : Review of BJT characteristics- Operating point of a BJT – Factors affecting stability of Q point and DC Biasing – Biasing circuits: fixed bias, collector to base bias, voltage division bias and self bias. (Derivation of stability factors for Voltage Divider Biasing only) –Bias compensation using diode and thermistor. Low frequency equivalent circuit of BJT. Common Emitter amplifier - AC Equivalent Circuit – Role of coupling and emitter bypass capacitors – h parameter model of BJT -Amplifier gains and impedances calculations using h equivalent circuit. 	9 hours	15%
Π	Field Effect Transistors : Review of JFET and MOSFET construction, working and characteristics- Biasing a JFET and MOSFET using voltage divider bias— CS and CD amplifiers – small signal models-FET as switch and voltage controlled resistance. Frequency response of Amplifiers : Miller's Theorem- BJT Internal Capacitances at high frequency operations- High frequency analysis of CE Amplifier using hybrid Pi Model -Low Frequency Response of Common Emitter amplifier — CE High frequency response-Gain bandwidth product- —Low and High Frequency response of FET amplifiers	9 hours	15%
	FIRST INTERNAL EXAMINATION		1370
	Multistage amplifiers : Direct, RC, transformer coupled amplifiers – 2014	8 hours	15%
III	Power amplifiers using BJT : Class A, Class B and Class AB and class C- Conversion efficiency and distortion in power amplifiers. Feedback Amplifiers- Effect of positive and negative feedbacks- Basic feedback topologies and their properties		
IV	Oscillators : Bark Hausen's criterion – RC oscillators (RC Phase shift oscillator and Wein Bridge oscillator) –LC oscillators (Hartley and Colpitt's)- Derivation of frequency of oscillation for the above mentioned oscillators- Crystal oscillator.	8 hours	15%

	Operational Amplifiers : Review of Operational Amplifier basics - Analysis of fundamental differential amplifier- Properties of ideal and practical Op-Amp - Gain, CMRR and Slew rate of IC 741 and LM 301– Drift and frequency compensation in OP Amps- Open loop and Closed loop Configurations-Concept of virtual short and its relation to negative feedback		
	SECOND INTERNAL EXAMINATION	NA /	1
V	 OP-AMP Circuits : Review of inverting and non- inverting amplifier circuits- Summing and difference amplifiers, Differentiator and Integrator circuits- Logarithmic amplifier- Half Wave Precision rectifier - Instrumentation amplifier. Comparators: Zero crossing and voltage level detectors, Schmitt trigger. 	AL 8hours	20%
VI	 Wave form generation using Op-Amps: Square, triangular and ramp generator circuits using Op-Amp - Effect of slew rate on waveform generation. Timer 555 IC : Internal diagram of 555 IC– Astable and Monostable multivibrators using 555 IC. Oscillator circuits using Op-amps : RC Phase shift oscillator, Wein Bridge oscillator, LC Oscillators-(Derivation not required) Crystal oscillator. 	8 hours	20%

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

2014

Estd.

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No.	Course Name	L-T-P -Credits	Year of				
			Introduction				
EE204 Digital Electronics and Logic Design		2-1-0-3	2016				
Prerequisite :	Nil						
Course Objec	tives						
To impart kno	wledge about digital logic and to gain the ab	ility to design vario	us digital circuits				
Syllabus	TECHNOLOG	TCA					
Review of N	umber Systems and Codes, Digital Logic	, Combinational L	ogic Circuits, Data				
Processing Ci	rcuits, Arithmetic Circuits, Flip-Flops, Re	egisters, Counters,	DACs and ADCs,				
Design of sync	chronous Sequential Circuits, Introduction to	HDL.					
Expected ou	tcome.						
After the suc	cessful completion of the course, the student	will be able to:					
1. Familiar	with various number systems and Boolean al	gebra					
2. design an 3. Familiar	d analyse any digital logic gate circuits and l	Flip flop based syste	ems.				
4. gain the c	apability of implementing various counters,						
5. describe t	he operation of ADC and DAC circuits						
Text Book:							
1. Floyd T.L,	Digital Fundamentals , 10/e, Pearson Educa	tion, 2011					
2. C.H.Roth a	and L.L.Kimney Fundamentals of Logic Des	ign, 7/e, Cengage L	earning, 2013				
References:	Estd.						
1. Donald P	Leach, Albert Paul Malvino and GoutamSah	na., Digital Principle	es and Applications,				
8/e, by M	c Graw Hill						
2. Mano M.	M, Logic and Computer Design Fundamenta	als, 4/e, , Pearson E	ducation.				
3. Tocci R.J	and N.S.Widmer, Digital Systems, Principle	s and Applications,	, 11/e, , Pearson				
Education	Education.						
4. John F. W	4. John F. Wakerly, Digital Design: Principles and Practices. 4/e. Pearson. 2005						
5. Taub & S	chilling: Digital Integrated Electronics, McC	braw Hill,1997					
	· ·						
Data Book (Approved for use in the examination):Nil						
Data Dook (Approved for use in the examination). Mi							

Course Plan				
Module	Contents	Hours	Sem.ExamMarks	
Ι	Number Systems and Codes : Binary, Octal and hexadecimal conversions- ASCII code, Excess -3 code, Gray code, Error detection and correction - Parity generators and checkers – Fixed point and floating point arithmetic. Binary addition and subtraction, unsigned and signed numbers, 1's complement and 2's complement arithmetic.	7 hours	15%	
П	TTL logic and CMOS logic - Logic gates, Universal gates - Boolean Laws and theorems, Sum of Products method, Product of Sum method – K map representation and simplification(upto four variables) - Pairs, Quads, Octets, Dont care conditions.	7 hours	15%	
	FIRST INTERNAL EXAMINATION			
III	Combinational circuits: Adders _ Full adder and half adder – Subtractors, halfsubtractor and fullsubtractor – Carry Look ahead adders – ALU(block diagram only). Multiplexers, Demultiplexers, Encoders, BCD to decimel decoders.	7 hours	15%	
IV	Sequential circuits: Flip-Flops, SR, JK, D and T flip-flops, JK Master Slave Flip-flop, Conversion of flip-flops, Registers -SISO,SIPO, PISO, PIPO. Counters : Asynchronous Counters - Modulus of a counter - Mod N counters.	8 hours	15%	
	SECOND INTERNAL EXAMINATION			
V	Synchronous counters: Preset and clear modes, Counter Synthesis: Ring counter, Johnson Counter, Mod N counter, Decade counter. State Machines: State transition diagram, Moore and Mealy Machines – Design equation and circuit diagram.	7 hours	20%	
VI	Digital to Analog conversion – R-2R ladder, weighted resistors. Analog to Digital Conversion - Flash ADC, Successive approximation, Integrating ADC.	8 hours	20%	

Memory Basics, Read and Write, Addressing, ROMs,				
PROMs and EPROMs, RAMs, Sequential Programmable				
Logic Devices - PAL, PLA, FPGA (Introduction and basic				
concepts only)				
Introduction to VHDL, Implementation of AND, OR, half adder and full adder.				
API ABDUL KALAM	M			
END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Note: Each question can have maximum of 4 sub questions, if needed.

2014

Course	No.	Course Nai	ne	L-T-P -Credits	Y Intr	ear of oduction
EE20	5	DC MACHINE TRANSFORM	S AND IERS	3-1-0-4		2016
Prerequi	site :	Nil				
Course ()bjec	ives				
T	o giv	e exposure to the stud	ents about the	concepts of direct	current n	nachines and
transfo	ormers	, including their const	ructional detail	s, principle of operation	ation and	performance
analys	is.	$\Delta D \Delta R$		KALA	14	
Syllabus	3		JUL	MALA	V1	
Electrom	agneti	c principles for Machin	es, electrodyna	mic equations and the	heir soluti	on, Magnetic
Circuits f	for M	achines, construction of	DC machines,	DC generators, DC	motor, Ti	ansformers -
single ph	ase a	nd three phase, Constru	ction of single	phase and three pha	se transto	rmers, losses
and effici	ency,	equivalent circuit, testin	g. Transformer	connections.		
Expected	f outc	ome.	ef this servers	the extendents will be a	h1. + .	
A 1	idar	tifu de generator turas	of this course,	the students will be a	ble to	
1	dage	inty de generator types,	and appreciate	their performance	risto moto	r types for
۷.	diff	arent applications		noi and select approp		i types tot
3	ana	vse the performance of	different types (of de motors		
3. 4	des	ribe the principle of one	ration of single	nhase transformers		
5	ana	vse the performance of	single phase tra	nsformers		
6.	fam	iliarize with the princip	le of operation a	and performance of the	ree phase	ransformers.
Text Boo	ok			<u> </u>		
1. B	imbra	P. S., Electrical Machin	erv, 7/e, Khann	a Publishers, 2011.		
2. N	agratł	J. and D. P. Kothari, Th	eory of AC Ma	<i>chines</i> , Tata McGraw	7 Hill, 200	6.
Reference	e Boo	ks				
1 . Fi	itzgera	ld A. E., C. Kingsley an	d S. Umans, <i>El</i>	ectric Machinery, 5/e	e, McGraw	⁷ Hill, 1990.
2. La	angsd	orf M. N., Theory of Alte	ernating Curren	nt Machinery, Tata M	cGraw Hil	1, 2001.
3. A D	bhijitl elhi 2	n Chakrabarti, Sudipta D 015	ebnath, Electric	cal Machines, McGra	w Hill Edu	ucation, New
4. D	eshpa	nde M. V., <i>Electrical M</i>	achines. Prentic	e Hall India. New De	elhi, 2011.	
5. T	heodo	re Wilde. <i>Electrical Mac</i>	chines. Drives a	and Power System. Pe	arson Ed.	Asia 2001.
Data Boo	ok (A	pproved for use in the	examination):	Nil		
			Course l	Plan		
Module		C	ontents		Hours	Semester Exam Marks
	Elect	romagnetic principles for	r Machines	11 - 1		
	Elect	ro dynamical equations	s and their sol	ution – rotational		
	moti	on system – mutually co	oupled coils – c	onstruction of DC		
Ι	macł	ines – energy conversio	n in rotating ele	ectrical machines –	9 hours	15%
	eddy	currents and eddy curre	nt losses – flux	distribution curve		
in the airgap – armature windings – lap and wave windings –						
	selec	tion criteria – equalizer i	rings – dummy	coils.		
	DC	generators – EMF equa	ation – method	is of excitation –		
	separ	ately and self excited	– shunt, ser	ies, compound –		
II	arma	ure reaction – effe	magnatizina	ure reaction –	9 hours	15%
	uema	igneuzing & cross		ampere-turns –		
		norove commutation	voltage bui	ild_up po load		
			vonage bu	nu-up - no ioau		

	characteristics – load characteristics – losses and efficiency –				
	generators.				
	FIRST INTERNAL EXAMINATION				
III	DC motor – principle of operation – back emf – classification – torque equation – losses and efficiency – power flow diagram – performance characteristics of shunt, series and compound motors – starting of dc motors – necessity and types of starters – speed control – methods of speed control – testing – Swinburne's test – Hopkinson's test – separation of losses – retardation test – applications of dc motors.	9 hou	Irs	15%	
IV	Transformers – principle of operation – types and construction, core type and shell type construction, dry type transformers, cooling of transformers – ideal transformer – transformation ratio – dot convention – polarity test – practical transformer – kVA rating – equivalent circuit – phasor diagram.	9 hou	ırs	15%	
SECOND INTERNAL EXAMINATION					
V	Transformer losses and efficiency – voltage regulation – OC & SC test – Sumpner's test – all day efficiency Autotransformer – saving of copper – current rating and kVA rating of autotransformers, parallel operation of single phase transformers, necessary and desirable conditions of parallel operation, on load and off load tap changers.	9 hou	ırs	20%	
VI	3-phase transformer – 3-phase transformer connections – Δ - Δ , Y-Y, Δ -Y, Y- Δ , V-V – vector groupings Yy0, Dd0, Yd1, Yd11, Dy1, Dy11 – Scott connection – three winding transformer – tertiary winding – percentage and per unit impedance – parallel operation of three phase transformers.	9 hoi	ırs	20%	
	END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI Student has to answer any 2 questions: $(2 \times 10) = 20$

Course N	o. Course Name	L-T-P -Credits	Yea	r of Introduction			
EE206	MATERIAL SCIENCE	3-0-0-3	100	2016			
Prerequis	ite · Nil			2010			
Course O	hiectives						
To	To impart knowledge in the field of material science and their applications in electrical						
en	pineering	serence and then up	pricatio				
Syllabus							
Conductir	g materials- properties-applications- Semi	conductor materia	ls- prop	erties-applications-			
Magnetic	materials-classification-allovs of iron-fe	errites-Dielectric m	aterials	-polarization-solid.			
liquid an	liquid and gaseous insulators-Dielectric breakdown-superconductors-solar energy materials-						
Spectrosco	ppy-micropscopy-magnetic resonance-nand	omaterials	A T	8,			
Expected	Outcome:		AT				
After the o	completion of the course student will be ab	le to:	Z 3.34	-			
1. De	escribe the characteristics of conducting and	d semiconducting n	naterials				
2. Cl	assify magnetic materials and describe dif	ferent laws related	to them				
3. Cl	assify and describe different insulators and	l to explain the beh	aviour c	of dielectrics in			
sta	tic and alternating fields	-					
4. De	scribe the mechanisms of breakdown in so	lids, liquids and ga	ses				
5. Cl	assify and describe Solar energy materials	and superconducting	ng mate	rials			
6. Ga	in knowledge in the modern techniques for	r material studies					
Text Boo	k:						
1. Dekker	A.J : Electrical Engineering Materials, Pre	ntice Hall of India					
2. G K Mi	thal : Electrical Engg Material Science. Kh	anna Publishers.					
Reference	es:						
1. Ta	reev, Electrical Engineerin Materials <mark>,</mark> Mir	Publications					
2. M	einal A.B and Meinal M. P., Applied Solar	Energy – An Introd	duction,	Addisos Wesley			
3. Na	sser E., <i>Fundamentals of Gaseous Ion</i> izati	on and Plasma Elec	ctronics	, Wiley Series			
in	Plasma Physics, 1971						
4. Na	idu M. S. and V. Kamaraju, <i>High Voltage</i>	Engineering, Tata	McGrav	v Hill, 2004			
$5. \ln $	dulkar O.S & Thiruvegadam S., An Introd	uction to electrical	Engine	ering Materials, S.			
Chan		G G I I '1					
6. Ag	nihotri O. P and Gupta B. K. Solar selectiv	e Surface, John Wil	ey	D1			
/. Set	n. S.P and Gupta P. V, A Course in Electri	cal Engineering Ma	ateriais,	Dhanpathrai			
	Course	e Plan	-				
Module	Contents	I	lours	Sem.ExamMarks			
	Conducting Materials: Conductivity- depend	ence on	8				
	temperature and composition – Materials for	electrical					
	applications such as resistance, machines, sol	ders etc.					
	Semiconductor Materials: Concept materials	and properties-					
	- Basic ideas of Compound semiconductors	amorphous and					
Ι	organic semiconductors- applications	uniorphous und					
	organie senieonauctors- appreations.						
	Dielectrics: Introduction to Dielectric polariz	ation and					
	classification -Clausius Mosotti relation- Bel	navior of					
	dielectric in static and alternating fields						
				15%			
п	Insulating materials and classification- proper	rties- Common	6				
11	insulating materials used in electrical apparat	us-Inorganic,		15%			

	organic, liquid and gaseous insulators- capacitor materials-		
	Electro-negative gases- properties and application of SF6 gas and its mixtures with nitrogen		
	Ferro electricity.		
	FIRST INTERNAL EXAMINATION	I	
Ш	Dielectric Breakdown: Mechanism of breakdown in gases, liquids and solids –basic theories including Townsend's criterion, Streamer mechanism, suspended particle theory, intrinsic breakdown, electro-mechanical breakdown- Factors influencing Ageing of insulators- Application of vacuum insulation- Breakdown in high vacuum-Basics of treatment and testing of transformer oil .	AM CAL	15%
IV	Magnetic Materials: Origin of permanent magnetic dipoles- Classification of magnetic materials -Curie-Weiss law- Properties and application of iron, alloys of iron- Hard and soft magnetic materials– Ferrites- Magnetic materials used in electrical machines, instruments and relays-	7	15%
	SECOND INTERNAL EXAMINATIO	N	
V	Superconductor Materials:-Basic Concept- types- characteristics-applications Solar Energy Materials: Photo thermal conversion- Solar selective coatings for enhanced solar thermal energy collection –Photovoltaic conversion – Solar cells -Silicon, Cadmium sulphide and Gallium arsenic – Organic solar cells.	7	20%
VI	Modern Techniques for materials studies: Optical microscopy – Electron microscopy – Photo electron spectroscopy – Atomic absorption spectroscopy – Introduction to Biomaterials and Nanomaterials	7	20%
	END SEMESTER EXAM		

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II.

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV. Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI. Student has to answer any 2 questions: $(2 \times 10) = 20$ **Note:** Each question can have maximum of 4 sub questions, if needed.

Course N	Io. Course Name	L-T-P -Credits	5	Year of
FF207	COMPLITER PROGRAMMING	2_1_0_3		2016
	hiectives	2-1-0-5		2010
To	impart knowledge about programming in C			
	have been a f DVTHON			
10	leani basics of F I THON.			
				·
Syllabus	Introduction to Programming, Basic element	ts of C, Control sta	atements	in C, Arrays and
Strings, Fi	inctions, Storage classes, Structures and Poi	nters, File Manage	ement in	C, Introduction
to Python	TECINICIC	NOIC	AT	
Exporto	Loutcome 1 Ability to design programs us	ing C language	AL	
2 Ability	to develop simple programs using Python	ing C language	h. hard	
2. Aunt	to develop simple programs using 1 yulon	YIY		
Text Boo	x: 1)E. Balaguruswamy, <i>Programming in AN</i>	SI C. Tata McGrav	w Hill, N	ew Delhi
2) John V	Guttag, Introduction to Computation and pro	ogramming using l	Python, P	HI Learning,
New Delh	 1.	0 0 0	,	6,
Data Bo	ok (Approved for use in the examination)	: Nil		
Referen	xes:			
1. P. Norte	on, Peter Norton's Introduction to Computer	s, Tata McGraw H	Iill, New	Delhi
2. Byron S	6. Gottfried, Programming with C, Schaun O	utlines –McGraw	Hill.	
3. Ashok 1	Kamthane, Programming with ANSI & Turb	o C- Pearson educ	ation	
4. K.R Ve	nugopal and S.R Prasad, Mastering C - Tata	McGraw Hill		
5. Kelley,	Al & Pohl, A Book on C- Programming in C	C, 4th Ed., Pearson	Educatio	n
	Course	Plan		
Module	Contents		Hours	Sem.ExamMarks
	Introduction to Programming: Machine 1	anguage	5hours	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	assembly language and high level language	e. Compilers	Jilouis	
	and assemblers.			
	Flow chart and algorithm – Development	of algorithms		
Ι	for simple problems.			
	Basic elements of C: Structure of C progra	m –Keywords,		
	Identifiers, data types. Operators and expre	essions – Input		
	and Output functions			15%
	Control statements in C: if if-else while	e. do-while and	7 hours	1.5 / 0
п	for statements switch break continue go	to and labels	/ 110013	
	Programming examples	io, una idocis.		150/
	FIRST INTERNAL FY	AMINATION		1370
	Arrays and Strings: Declaration initialized	tion processing	7 hours	15%
ш	arrays and strings. Deciaration, initialisa	iltidimensional	7 nours	1370
111	arrays and strings two dimensional and ma	vrams		
	Functions · Functions – declaring defining	and accessing	7 hours	15%
	functions – parameter passing methods – – r	assing arrays	/ 110013	1070
IV	to functions. Recursion	and anays		
- 1	Storage classes – extern, auto register and	static. Example		
	programs.			
	SECOND INTERNAL E	XAMINATION		L

	Structures – declaration, definition and initialization of	8 hours	20%
	structures, unions		
V	Pointers: Concepts, declaration, initialization of pointer		
v	variables, Accessing a Variable through its Pointer Chain		
l	of Pointers, Pointer Expressions, Pointer Increments and		
	Scale Factor, Pointers and Arrays, examples		
	File Management – File operations, Input/Output	8hours	20%
	Operations on Files, Random Access to Files ,File pointer.		
VI	Introduction to Python :Basic Syntax, Operators, control statements, functions-examples.	M	
	TECHNIALAGIC	AT	

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: (2 x 10) =20

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Note: Each question can have maximum of 4 sub questions, if needed.

2014

Course N	o. Course Name	L-T-P-Credits	Year	of Introduction		
EE208	MEASUREMENTS AND INSTRUMENTATION	3-1-0-4		2016		
Prerequis	Prerequisite : Nil					
Course O	bjectives					
Te	o develop understanding of various electric	al measuring instrum	ents and	instrumentation		
de	evices					
Syllabus	ADI ADINI II	T.Z. A. T. A.	Kad			
Measurem	ents standards, errors in measurements, operat	ing torques, classification	on of elec	trical meters,		
Measurem	ent of voltage, current, resistance, power, ener	gy, high voltage and high	gh current	ts. Magnetic		
measurem E-masted	ents, ac potentiometers, ac bridges, CRO, Tra	insducers	A			
After the c	outcomes:	JUIUI				
Aner the C	onprediction of the course student will be able to	, king principles, advanta	ges and d	isadvantages		
2 Exp	lain the operating principles of various ammet	ers voltmeters and ohm	meters	isadvantages.		
2. Exp 3. Des	cribe wattmetrs and energy meters	ors, voluneters and onin	meters			
4. Des	cribe different flux and permeability measuren	nents methods				
5. Ider	tify different AC potentiometers and bridges,					
6. Und	lerstand the working and applications of cathod	de ray oscilloscope				
7. Ider	tify the transducers for physical variables and	to describe operating pr	rinciple			
Text Bool	K:					
1. Saw	hney A.K., A course in Electrical and Electron	nic Measurements & ins	trumenta	tion, DhanpatRai.		
2. J. B	. Gupta, A course in Electrical & Electronic M	leasurement & Instrume	ntation.,	S K Kataria&		
Son	s					
3 . Kal	si H. S., Electronic Instrumentation, 3/e, Tata I	McGraw Hill, New Delł	ni, 2012			
Reference	es:		D 1			
1. Gol	ding E.W., Electrical Measurements & Measur	ring Instruments, Wheel	er Pub.			
$2. \operatorname{Coc}_{2}$	per W.D., Modern Electronics Instrumentation	n, Prentice Hall of India				
3. Stol	It M.B., Basic Electrical Measurements, Prenti	ice Hall	11			
4. OIN 5. E.O	Doebelin and DN Manik Doebelin's Mar	asurements Systems si	II ivth editi	on McGraw Hill		
J. E.O Edu	cation (India) Pvt I td	asurements Systems, si		on, wiedław IIII		
6 P Pi	rkait B Biswas S Das and C Koley	Electrical and Electr	onics M	easurements and		
Inst	rumentation, McGraw Hill Education (India)	Pvt. Ltd.,2013	omes w	cusurements and		
	Cours	e Plan				
Module	Contents		Hours	Sem.ExamMarks		
	General principles of measurements –	measurement system-				
	measurement standards - characteristics - e	rrors in measurement-				
	calibration of meters- significance of IS stand	lards of Instruments.				
Т	Classification of meters - operating forces - o	essentials of indicating	9	15%		
1	instruments - deflecting, damping, controlling	g torques.	,	1070		
	Ammeters and voltmeters - moving	coil, moving iron,				
	constructional details and operating, pr	inciples shunts and				
	multipliers – extension of range.	mont of insulation				
	ivicasurement of resistance: measurem	inclit of insulation				
	resistance - loss of charge method, me	easurement of earth				
	resistance.		10	150%		
II	I phase and 3 phase newser massurement	1 phase and 2 phase	10	1.J /0		
	energy meters (induction type) electronic	energy meter TOD				
	meter	e energy meter, TOD				
	11101011					

	FIRST INTERNAL EXAMINATION				
III	Introduction to high voltage and high current measurements: Measurement of high DC voltages - measurement of high AC voltages - electrostatic voltmeters – sphere gaps - DC Hall effect sensors - high current measurements. Study of Phasor Measurement Units (PMU). Current transformers and potential transformers – principle working, ratio and phase angle errors – numerical problems, Clamp on meters.	9	15%		
IV	Magnetic Measurements: Measurement of flux and permeability - flux meter - hall effect Gaussmeter - BH curve and permeability measurement - hysteresis measurement- ballistic galvanometer – principle- determination of BH curve - hysteresis loop. Lloyd Fisher square — measurement of iron losses Measurement of rotational speed using proximity sensors and optical sensors.	9_	15%		
	SECOND INTERNAL EXAMINATION				
V	DC & AC potentiometers - General Principle - calibration of ammeter, voltmeter and wattmeter using potentiometer. AC Bridges: Maxwell's bridge- Schering bridge and Wien's bridge Oscilloscopes – Basic principle of signal display - Block diagram and principle of operation of general purpose CRO - vertical deflecting system - horizontal deflection system - basic sweep generator - XY mode and Lissajous patterns - applications of CRO - dual trace oscilloscope. digital storage oscilloscope	9	20%		
VI	Transducers - Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature - basic principles and working of LVDT, electromagnetic and ultrasonic flow meters, piezoelectricforce transducer, load cell, strain gauge- bridge configuration for four strain gauges, RTD, Thermistors, thermocouple, Need for instrumentation system, data acquisition system.	9	20%		
	END SEMESTED EVAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40 **Part B**: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV Student has to answer any 2 questions: (2 x 10) =20

Part D: 3 questions uniformly covering modules V&VI Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE231	ELECTRONIC CIRCUITS LAB	0-0-3-1	2016
Course Object	ives		2010
To design and	develop various electronic circuits using di	screte components and	OPAMPs.
List of Exercis	es/Experiments : (Out of 18 experiments	listed, 12 experiments	are mandatory.
1.Study & Use	of CRO: Measurement of current voltage,	, frequency and phase sl	nift.
2.Half wave an	d Full wave (Centre-tapped and bridge) Re	ectifiers with and without	ut filters-
Calculation of	Ripple factor, Rectification efficiency, and	% regulation.	
3. Clipping circ	cuits using diodes	CIC II	
4. Clamping cir	rcuits using diodes	(ILAL	
5. RC coupled	amplifier using BJT in CE configuration-1	Measurement of gain, in	put and
output impedar	ice and frequency response	IIY	-
6. JFET amplif	ier- Measurement of voltage gain, current	gain, input and output in	npedance
7.Design and te	esting of simple zener voltage regulators		
8.OPAMP circ	uits – Design and set up of inverting and ne	on-inverting amplifier,	scale changer,
adder, integrate	or, differentiator		
9. Precision rec	tifier using Op-amps		
10.Phase shift	oscillator using OPAMPs.		
11.Wein's Brid	ge oscillator using OPAMPs.		
12.Waveform	generation – Square, triangular and sawtoo	th wave form generation	n using
OPAMPs.			
13. Basic comp	parator and schmitt trigger circuits using O	p-amp	
14. Design and	l testing of series voltage regulator using z	ener diode	
15. Astable and	I monostable circuit using 555 IC		
16. RC phase s	hift oscillator using BJT		
17.Introduction	to circuit simulation using any circuit sim	ulation software.	
18. Introduction	n to PCB layout software		
			-
Expected out	come.		' DIT 1
I ne student si	louid be able to design and implement var	lous electronic circuits t	ising BJTs and
OPAMPS.	Lotu.		
Toyt D	alt/Defenences		
1 Molvin	Dok/References:	7/2 Tata MaCrow Hill	2010
$\begin{array}{c} 1. \text{Ivial VIII}\\ 2 \text{Rowlest} \end{array}$	ad R. L. and L. Nashelsky Electronic Day	ices and Circuit Theory	$\frac{2010}{10}$ Paarson
2. Doylest	on India 2009	ices and Cheun Theory	, 10/C, 1 Carsoll
3 Choudh	ury R Linear Integrated Circuits New A	re International Publish	ers 2008
J. Millma	n L and C C Halkias Integrated Electron	cs. Analog and Digital	Circuits and
4. Iviiiiila	a Tata McGraw-Hill 2010	. Analog and Digital	
S ysichi	5, 1 a a w 0 a v - 11 a v -		

Systems, Tata McGraw-Hill, 2010.

EE232Electrical Machines Lab - I0-0-3-120)16
EE232Electrical Machines Lab - I0-0-3-120)16
Course Objectives	
To learn the working and testing methods of DC mechines and transformers	
To learn the working and testing methods of DC machines and transformers.	
List of Exercises/Experiments:	
THIMDUOLIVILIU	
Part A – DC Machines	
1. Open circuit characteristics of DC shunt generator	
Objectives:	
a) Predetermine the OCC at different speeds	
b) Determine the critical field resistance	
c) Obtain maximum voltage built up with given shunt field resistance	
d) Obtain critical speed for a given shunt field resistance	
2. Load test on DC shunt generator	
Objectives:	
a) Determine the external & internal characteristics	
b) Deduce the armature reaction curve	
3. Load test on DC compound generator	
Objectives:	
a) Determine the external characteristics cumulative compound condition	
b) Determine the external characteristics differential compound condition	
4. Brake test on DC shunt motor	
Objectives:	
Plot the following characteristics	
1) Efficiency Vs Output	
ii) Line current vs Output	
Esta.	
iv) Speed vs forque	
v) Line current Vs Torque	
5. Brake test on DC series motor	
Objectives:	
i) Efficiency Va Output 2014	
i) Line surrent Vs Output	
iii) Speed Va Output	
iv) Speed Vs Output	
y) Line current Vs Torque	
6 Swinburne's test on a DC shunt machine	
Objectives.	
Predetermine the armature current and nercentage efficiency when the machine on	erates as a
motor and as a generator for various load conditions and plot efficiency Vs output	curves
7 Honkinson's test on a nair of DC machines	
Ohiectives.	
Determination of the efficiency of the given do shunt machine working as a motor	and

generator

under various load conditions.

- 8. Retardation test on a DC machine
 - Objectives:
 - a) Separation of hysteresis, eddy current, friction & windage losses
 - b) Find the moment of inertia of the rotating system
- 9. Separation of losses in a DC shunt motor
 - Objectives:
 - a) Separation of hysteresis, eddy current, friction & windage losses
 - b) Plot the losses vs speed curves

Part B – Transformers

10. O.C. & S.C. tests on the single phase transformer

Objectives:

- Predetermination of the following
 - a) Efficiency at different load conditions and different power factors
 - b) Regulation at different load conditions and different power factors
 - c) Equivalent circuit referred to HV and LV sides
 - d) UPF load at which efficiency is maximum
 - e) Power factors at which regulation is maximum and zero
 - f) Regulation vs. power factor curves
- 11. Load test on the single phase transformer

Objectives:

- a) Determination of the efficiency at different load conditions and unity power factor
- b) Determination of the regulation at different load conditions and unity power factor
- c) Plot efficient vs. output & regulation Vs output curves
- 12. Separation of losses in a single phase transformer
 - Objectives:

Separate the hysteresis & eddy current losses at different voltages & different frequencies keepingV/f constant & plot losses vs. frequency curves. Hence

- i) Separate the hysteresis & eddy current losses at normal voltage & different frequencies &
- plot losses vs. frequency curves 510
- ii) Separate the hysteresis & eddy current losses at normal frequency & different voltages &
- plot losses vs. voltage curves.
- 13. Sumpner's test

Objective:

- a) Predetermination of efficiency at different load conditions and power factors
- b) Predetermination of regulation at different load conditions and power factors
- c) Plot efficiency vs. output & regulation vs. power factor curves
- d) Obtain the equivalent circuit referred to LV & HV sides
- 14. Scott connection of single phase transformers

Objectives:

Determine the efficiency at different load conditions when

- a) Main transformer alone loaded
- b) Teaser transformer along loaded
- c) both transformers loaded under balanced conditions
- d) both transformers loaded under unbalanced conditions
- e) Plot efficiency vs. output curves for each case.

15. Parallel operation of single phase transformers

Objectives:

- a) To determine the load sharing of each transformer by their equivalent impedances
- b) To verify the load sharing by actual measurements
- 16. Three phase connection of single phase transformers

Objectives:

- a) Determine the polarity of single phase transformers
- b) Connect three single phase transformers in star-star configuration
- c) Connect three single phase transformers in star-delta configuration
- d) Determine the transformation ration in the above cases
- 17. O.C. & S.C. tests on the Three phase transformer

Objectives:

Predetermination of the following

- a) Efficiency at different load conditions and different power factors
- b) Regulation at different load conditions and different power factors
- c) Equivalent circuit referred to HV and LV sides
- 18. Load Test on V connected Transformers

Objectives:

Connect two single phase transformers in V-V connection and conduct a load test to plot the efficiency curve.

Out of the above experiments, minimum twelve experiments should be done in lab taking at least six experiments from both Part A and Part B.

Expected outcome:

After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers

After the successful completion of this course, the students will be able to

- 1. Analyse the characteristics of different dc generators
- 2. Separate the losses in dc motors
- 3. Analyse the performance of different types of dc motors
- 4. Determine the performance characteristics of single phase transformers
- 5. Compare the performance of transformers in different modes of operations and connections

2014

Text Book:

- 1. Bimbra P. S., *Electrical Machinery*, 7/e, Khanna Publishers, 2011.
- 2. Theraja B. L., A Textbook of Electrical Technology, S. Chand & Company, New Delhi,
- 2008.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE233	PROGRAMMING LAB	0-0-3-1	2016
Course Objective	28	•	1
l o impart knowl	edge and develop skills in program	ming	
List of Exercises/	Experiments : (Minimum 12 exerci	ses/experiments are mai	ndatory)
A	FLADUUL	NALAM	
1. At least for	ur simple programs using input output	t statements (example: a	rea of rectangle,
circle, etc)	EUFINULU	AIL AL	
2. At least for	ur Simple programs using decision sta	tements (Example: Even	or odd, pass or
fail)	UNIVER	NI I Y	
3. At least for	ur Programs using Control statements	and decision statements	(Example
maximum, m	inimum of a given set of numbers, hc	f, lcm)	
4. Program to	add n numbers		
5. Programs t	o print patterns		
6. Program to	check whether a number is prime		
7. program to	generate Fibonaacii series		
8. Array mar	nipulation (searching, insertion and	sorting)	
9. Few progr	rams using pointers		
10. Functions	Pass by value Pass by reference		
11. Recursive	functions (example: Fibonaacii serie	es and factorial)	
12.String mar	nipulation – compare, copy, reverse of	perations	
13. Matrix of	berations: addition multiplication, determined to a file Manai	erminant and inverse	
14. Reading 1	folgebraic and transcondental equation	ong and appending of mes	Danhaan
nethod- c	omparison	ons. Disection, newton-	Raphson
16 Introducto	ory programs using Python		
17. Function	calls in Python		
- ,	Estd.		
Expected outcom	me. 1. Ability to design programs usin	ng C language	
-	2. Ability to develop simple progr	cams using Python	
References:	2014	1 hours of the	
1. E. Balagurus	wamy, <i>Programming in ANSI C</i> , Tata	McGraw Hill, New Dell	i
2. Kernighan, E	Brian W., and Dennis M. Ritchie. The	C programming language	e. Vol. 2.
Englewood C	lifts: prentice-Hall, 1988.		
3. Introduction t	o computation and programming usin	g Python, John V. Guttag	, ,
гпі Learning, N			

4. Downey, Allen, Jeffrey Elkner, and Chris Meyers. *How to think like a computer scientist: learning with python*. John Wiley 2015.
5. Lambert, Kenneth. Fundamentals of Python: first programs. Cengage Learning, 2011.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE234	CIRCUITS AND MEASUREMENTS LAB	0-0-3-1	2016
Course Object	tives		
To deve	elop measurement systems for various electrical ci	rcuits and syster	ns and to use
differer	t transducers for measurement of physical variable	es.	
List of Exercis	ses/Experiments : (18 experiments are listed, out	of which 12 exp	eriments are
mandatory).	ADI ADDITI IZA	TAKA	
1 17 10	артавільні ка	IAM	
1. Verification	n of Superposition Theorem in de circuits.	CAI	
2. Vermication	ion of impedance, admittance, power factor and re	al/reactive/ ann	arent nower
drawn in R	LC series/parallel circuits		arent power
4. 3-phase por	wer measurement using one wattmeter and two-wa	attmeter method	
5. Determinat	ion of B-H curve, μ-H curve and μ-B curve of an i	ron ring specim	en.
6. Measureme	nt of voltmeter and ammeter resistances using Wh	eatstone's bridg	ge and Kelvin's
double brid	ge and extension of range of voltmeters and amme	eters	
7. Measureme	ent of self/ mutual inductance and coupling co-effi	cient of iron cor	ed coil
and air-core	ed coil.	• 1• 1	
8. Calibration	of meters and measurement of unknown resistance	e using slide- w	ire
9 Calibration	of single phase energy meter by direct and phants	m loading at va	rious power
factors	or single phase energy meter by uncer and phane	in loading at va	nous power
10. Calibration	of 3-phase energy meter using standard wattmete	r.	
11. Calibration	of wattmeter using Vernier dial potentiometer		
12. Measureme	ent of capacitance using Schering Bridge.		
13. Extension of	of instrument range by using Ins <mark>tr</mark> ument transform	ers(CT and PT)	
14. Characteris	tics of Thermistor, RTD, and Thermocouple		
15. Characteris	tics of LVDT.		
16. Characteris	tics of strain gauge/ Load cell.		
17. Measureme	ent of energy using electronic Energy meter/10D	neter	
Fynected Out	come:		
After the comp	letion of the course student will be able to:		
1. Analyz	e RLC circuits and coupled circuit to obtain the vo	ltage -current re	lations
2. Verify	DC netwok theorems by setting up various networ	ks	
3. Calibra	te the single phase and three phase energy meter a	t various power	faqctors
4. Measur	e power in a single and three phase circuits by var	ious methods	
5. Determ	ine magnetic characteristics of iron ring specimen		
6. Measur	e high and low resistances using various bridges		
7. Use Ele	ectronic energy meter, TOD meter and clamp on m	eter	
Lext Book:	AV. A course in Flootnicel and Flootneric Measure	manta P-instan	montation
1. Sawnney	A. A course in Electrical and Electronic Measure	emenus & instrui	mentation,
2 IR Gunta	· A course in Electrical & Electronic Measuremet	nt & Instrumente	ation SK
Z. J. B. Gupta Kataria &	Sons		
	~ • • • • •		

3. Kalsi H. S., Electronic Instrumentation, 3/e, Tata McGraw Hill, New Delhi, 2012