Course code	Course Name	L-T-P- Credits	Year of Introduction
ME401	DESIGN OF MACHINE ELEMENTS - I	3-1-0-4	2016
Prerequisite: N	ME201 Mechanics of Solids		
Course Objec	tives:		
	ew concepts of statics and strength of materials.		
• To intro	oduce fundamental approaches to failure prevention of cor	nponents.	
-	ide knowledge in the design of common machine elemen cotter joints and couplings.	ts such as fast	eners, shafts,
Syllabus			
	o Design, Materials and their properties, Theories of		-
	d Joints, Bolted joints, Design of riveted joints, Cotter a	•	oints, Design of
welded joints,	Helical springs, Leaf springs, Shafting, Design of Couplin	g.	
Expected out	come:		
The students v			
	ut various stresses induced in a machine element under dif	ferent type of	loading
conditi			
ii. Devise	machine components for its conceptual design.		
Text Books:			
1. Jala	aludeen, Machine Design, Anuradha Publications, Chenna	ai,2014	
	L. Norton, Machine Design – An Integrated Approach, Pe		on, 2001
3. V.I	B.Bhandari, Design of Machine elements, McGraw Hill, 2	010	
Data books p	ermitted for reference in the final examination:		
	Mahadevan, K.Balaveera Reddy, Design Data Hand Book tributors, 2013	, CBS Publish	ers &
	ayanaIyengar B.R & Lingaiah K, Machine Design Data H I/Suma Publications, 1984	landbook, Tat	a McGraw
3. PSO	G Design Data, DPV Printers, Coimbatore, 2012		
References Bo	oks:		
	Shigley, Mechanical Engineering Design, McGraw Hill,2		
	nall R.C & Marshek K.M., Fundamentals of Machine Cor	nponent Desig	gn, John
	ey,2003 F. Spotts, T. E. Shoup, Design of Machine Elements, Pears	son Education	2006
	endra Karwa, Machine Design, Laxmi Publications, 2006		, 2000

KTUQBANK.COM

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
	Introduction to Design- Definition, steps in design process, preferred numbers, standards and codes in design	4	
I	Materials and their properties- Elastic and plastic behaviour of metals, ductile and brittle behaviour, shear, bending and torsional stresses, combined stresses, stress concentration factor.	5	15%
II	Theories of Failure- Guest's Theory, Rankine's Theory, St. Venant's Theory, Haigh's Theory, and Von Mises and Hencky Theory.	5	150/
11	Shock and impact loads, fatigue loading, endurance limit stress, factors affecting endurance limit, factor of safety	6	15%
	FIRST INTERNAL EXAM		
ш	Threaded Joints- Terminology, thread standards, types of threads, stresses in screw threads	3	150/
III	Bolted joints- effect of initial tension, eccentric loading, design of bolts for static and fatigue loading, gasketed joints, power screws	4	15%
	Design of riveted joints- Material for rivets, modes of failure, efficiency of joint, design of boiler and tank joints, structural joints	4	
IV	Cotter and Knuckle joints- Gib and Cotter Joint, analysis of knuckle joint.	4	15%
	Design of welded joints- welding symbols, stresses in fillet and butt welds, Butt joint in tension, fillet weld in tension, fillet joint under torsion, fillet wed under bending, eccentrically loaded welds.	4	
	SECOND INTERNAL EXAM		
V	Springs- classification, spring materials, stresses and deflection of helical springs, axial loading, curvature effect, resilience, static and fatigue loading, surging, critical frequency, concentric springs, end construction.		20%
	Leaf springs- Flat springs, semi elliptical laminated leaf springs, design of leaf springs, nipping	4	
VI	Shafting- material, design considerations, causes of failure in shafts, design based on strength, rigidity and critical speed, design for static and fatigue loads, repeated loading, reversed bending	5	20%
	Design of Coupling- selection, classification, rigid and flexible coupling, design of keys and pins	3	
	END SEMESTER EXAM		

Use of approved data book permitted

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks =30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks Students will have to answer any 2 questions out of 3 (2X20 marks =40 marks)

Course code	Course Name L-T- Cree			ar of duction
ME403	ADVANCED ENERGY ENGINEERING 3-0)-0-3	20	16
Prerequisi	te: Nil			
1. Tog 2. Tou 3. Tok	bjectives: ive an idea about global energy scenario and conventional energy sour nderstand solar, wind and Biomass energy now concepts of other renewable energy sources reate awareness on the impacts of energy conversion and importance of		nable ener	rgy
conversion sources –g	Id Indian energy scenario, conventional energy sources, environ , renewable energy sources- solar, wind, biomass, brief account o eothermal, tidal, MHD, hydrogen, fuel cells, small scale hydro pow Sustainability issues.	f other	renewabl	e energy
-	outcome: nts will be able to Understand energy scenario and the environmental effects of energ Become aware of different renewable energy sources and choose s	•		for
2. P K 3. Tiwa	ks: Arson W Tester et.al., Sustainable Energy: Choosing Among Options, H Nag, Power Plant Engineering, TMH, 2002 Ari G N, Ghosal M K, Fundamentals of renewable energy sources, Alp 2007			ational
Sons 2. God 3. Rola futur	es Books: d Merick, Richard Marshall, Energy, Present and Future Options, Vol , 2001 frey Boyle, Renewable Energy : Power for a Sustainable Future, Oxfor and Wengenmayr, Thomas Buhrke, 'Renewable Energy: Sustainable e re, Wiley – VCH, 2012 idell J W and Weir A D, Renewable Energy Resources, UK, E&F.N.	rd Unive nergy co	ersity Pres oncepts fo	ss, 2012
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Introduction to the course. Global and Indian energy resources. E Demand and supply. Components, layout and working principles of hydro, nuclear, gas turbine and diesel power plants	0.	7	15%
II	Solar Energy- passive and active solar thermal energy, solar colle solar thermal electric systems, solar photovoltaic systems. Econom solar power. Sustainability attributes.		7	15%
	FIRST INTERNAL EXAM			

III	Wind Energy-Principle of wind energy conversion system, wind data and energy estimation, wind turbines, aerodynamics of wind turbines, wind power economics. Introduction to solar-wind hybrid energy systems	7	15%
IV	Biomass Energy – Biomass as a fuel, thermo-chemical, bio-chemical and agro-chemical conversion of biomass- pyrolysis, gasification, combustion and fermentation, transesterification, economics of biomass power generation, future prospects.	6	15%
	SECOND INTERNAL EXAM		
V	Other Renewable Energy sources – Brief account of Geothermal, Tidal, Wave, MHD power generation, Small, mini and micro hydro power plants. Fuel cells – general description, types, applications. Hydrogen energy conversion systems, hybrid systems- Economics and technical feasibility	8	20%
VI	Environmental impact of energy conversion – ozone layer depletion, global warming, greenhouse effect, loss of biodiversity, eutrophication, acid rain, air and water pollution, land degradation, thermal pollution, Sustainable energy, promising technologies, development pathways	7	20%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits		ear of oduction
ME 40:	5 REFRIGERATION AND AIR CONDITIONING	2-1-0-3	20)16
Prerequis	ite: ME205 Thermodynamics			
1. To 2. To 3. To 4. To 5. To Syllabus	bjectives: introduce vapour compression and vapour adsorption syster impart knowledge on refrigeration cycles and methods to familiarize the components of refrigeration systems introduce air conditioning systems know the applications of refrigeration and air conditioning	improve perfo		
refrigerat Refrigera	tion, Thermodynamics of refrigeration, Air refriger ion, Adiabatic demagnetization of paramagnetic salts, ints and their properties, Application of refrigeration, Ref itioning, Psychrometry, Air conditioning systems.	Vapour comp	pression s	ystems,
-	outcome: nts will be able to Understand the principles refrigeration of air-conditioning Carry out analysis of refrigeration cycles Apply the concepts of indoor environmental comfort. Perform psychrometric calculations, humidity control processes Know the various applications of Refrigeration and air con-	and analysis	-	
 Arc Bal 	ks: ora C. P, Refrigeration and Air-Conditioning, McGraw-Hill, ora S. C. and Domkundwar, Refrigeration and Air-Condition laney P. L, Refrigeration and Air-Conditioning, Khanna Pu nohar Prasad, Refrigeration and Air-Conditioning, New Ag	ning, Dhanpat blishers, New	Delhi, 20	
2. Dos	es Books: HRAE Handbook ssat. R. J, Principles of Refrigeration, Pearson Education Ind ecker W.F, Refrigeration and Air-Conditioning, McGraw-H		Company	, 2009
	Course Plan			
Module	Contents		Hours	Sem. Exam Marks
I	Introduction – Brief history and applications of a Thermodynamics of refrigeration- reversed Carnot cycle and refrigeration machines, Limitations of reversed Carnot of refrigeration- Air refrigeration systems- Reversed Jou craft refrigeration systems, simple bootstrap- Regen reduced ambient system	- heat pump t cycle. Unit le cycle, Air	6	15%

п	Vortex tube refrigeration-Very low temperature refrigeration systems (concept only). Adiabatic demagnetization of paramagnetic salts Vapour compression systems-simple cycle - representation on T- s and P- h Diagrams. COP- Effect of operating parameters on COP – methods of improving COP of simple cycle- super- heating , under cooling, Liquid suction heat exchanger, actual cycle. FIRST INTERNAL EXAM	8	15%
	Multi pressure systems - multi compression and multi evaporator, systems. Inter cooling - flash inter cooling and flash gas removal-		
ш	Different combinations of evaporator and compressor for different applications, Cascade system Refrigerants and their properties-Eco-friendly Refrigerants, mixed refrigerants, selection of refrigerants for different applications Vapour absorption systems - Ammonia – water system - simple system- drawbacks-Lithium Bromide water system- Electrolux- comparison with vapour compression system- steam jet refrigeration.	7	15%
IV	Application of refrigeration- domestic refrigerators- water coolers- ice plants. Cold storages- food preservation methods- plate freezing, quick-freezing. Refrigeration system components- Compressors, condensers, expansion devices, evaporators. Cooling towers- Different types and their application fields- Refrigerant leakage and detection – charging of refrigerant – system controls.	6	15%
	SECOND INTERNAL EXAM		
V	Air conditioning – meaning and utility, comfort and industrial air conditioning. Psychometric properties- saturated and unsaturated air, dry, wet and dew point temperature – humidity, specific humidity, absolute humidity, relative humidity and degree of saturation- thermodynamic equations- enthalpy of moisture- adiabatic saturation process -psychrometers. Thermodynamic wet bulb temperature, psychometric chart- Psychometric processes- adiabatic mixing- sensible heating and cooling- humidifying and dehumidifying, air washer – bypass factor- sensible heat factor-RSHF and GSHF line- Design condition- Apparent dew point temperature – Choice of supply condition, state and mass rate of dehumidified air quantity – Fresh air supplied –air refrigeration. Comfort air conditioning- factors affecting human comfort. Effective temperature – comfort chart. Summer air conditioning- factors affecting-cooling load estimation.	8	20%
VI	Air conditioning – factors affecting heating vote total and mathematical packaged system-all air system-chilled water system. Winter air conditioning – factors affecting heating system, humidifiers. Year round air conditioning AC system controls-thermostat and humidistat. Air distribution systems- duct system and design- Air conditioning of restaurants, hospitals, retail outlets, computer center, cinema theatre, and other place of amusement. Industrial applications of air conditioning.	7	20%
	END SEMESTER EXAM		

Use of approved Refrigerant tables permitted

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	code	Course Name	L-T-P-Credits	Yea	r of Intro	oduction
ME ²	07	MECHATRONICS	3-0-0-3		2016	
Prerequis	ite: Nil					
Course C	To intr To stud	oduce the features of various sensors used by the fabrication and functioning of MEM ble development of hydraulic/pneumatic of	S pressure and iner	tial sen	sors	
Mechatro	tion to 1 onics in (Mechatronics, sensors, Actuators, Micro Computer Numerical Control (CNC) mach tactile sensors, Image processing technique	nines, Mechatronics	s in Ro	botics-El	ectrical
Perso 2. Rama Mech 3. Saeed	ents will b Know Integra <u>mechat</u> ks: n W., Me n Educati chandran anical Ele	be able to the mechanical systems used in mechatro te mechanical, electronics, control and cor <u>ronics systems</u> echatronics: Electronic Control Systems i on Limited, New Delhi, 2007 K. P., G. K. Vijayaraghavan, M. S. ectronic Systems, Wiley India Pvt. Ltd., Ne , Introduction to Robotics: Analysis, System	n Mechanical and Balasundaram, Me ew Delhi, 2008.	Electric	cal Engin	egrated
Reference 1. David McGr 2. Gorde	es Books I G. Alda aw-Hill I on M. Ma		ational, UK, 1998.			ystems,
		dan, K. J. Vinoy, S. Gopalakrishnan, Sm ent Methodologies, John Wiley & Sons Lto			MEMS:	Design
		Course Plan				
Module	Module Contents Hours			End Sem. Exam Marks		
I	- Chara position inductiv and abs	ction to Mechatronics: Structure of Mecha acteristics -Temperature, flow, pressure and proximity sensing by magneti ve, capacitive and eddy current methods. solute, gray coded encoder. Resolvers and Acoustic Emission sensors. Principle	sensors. Displacem c, optical, ultrasc Encoders: increme synchros. Piezoelee	nent, onic, ental ctric	8	15%

	Question Paper Pattern		
	END SEMESTER EXAM		
VI	 Robotic vision system - Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding. Case studies of Mechatronics systems: Automatic camera, bar code reader, pick and place robot, automatic car park barrier system, automobile engine management system. 	7	20%
V	 System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems. Mechatronics in Robotics-Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Force and tactile sensors. Range finders: ultrasonic and light based range finders 	6	20%
IV	Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Mechatronics elements - Machine structure: guide ways, drives. Bearings: anti-friction bearings, hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws, pre-loading methods. Re-circulating roller screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) –Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple ladder programs for specific purposes. SECOND INTERNAL EXAM	8	15%
III	Micro Electro Mechanical Systems (MEMS): Fabrication: Deposition, Lithography, Micromachining methods for MEMS, Deep Reactive Ion Etching (DRIE) and LIGA processes. Principle, fabrication and working of MEMS based pressure sensor, accelerometer and gyroscope.	6	15%
Π	pressure control valves, process control valves. Rotary actuators. Development of simple hydraulic and pneumatic circuits using standard Symbols. FIRST INTERNAL EXAM	7	15%
	Actuators: Hydraulic and Pneumatic actuators - Directional control valves,		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	ode Course Name	L-T-P- Credits	Year of Introduction
ME409	COMPRESSIBLE FLUID FLOW	2-1-0-3	2016
Prerequ	isite: ME205 Thermodynamics	I	
Course Ol	ojectives:		
	familiarize with behavior of compressible gas flow.		
	understand the difference between subsonic and supersonic flov	N	
• To	familiarize with high speed test facilities		
Syllabus			
	on to Compressible Flow, Wave propagation, One dimensio	•	-
	le discontinuity in supersonic flow, Flow in a constant area duct		
	ough constant area duct with heat transfer (Rayleigh Flow) on and measurement, measurement in compressible flow, Wind		ble flow field
		i tuimeis	
Expected of The studen	ts will be able to		
i.	Formulate and solve problems in one -dimensional steady comp	pressible flow	including:
1.	isentropic nozzle flow, constant area flow with friction (Fanno	•	U
	with heat transfer (Rayliegh flow).	110) und 001	
ii.	Derive the conditions for the change in pressure, density and te	mperature for	flow through a
	normal shock.		
iii.	Determine the strength of oblique shock waves on wedge shape		concave corners
iv.	Know the various measuring instruments used in compressible	flow	
) Data book/	Gas tables:		
1. Yahya	S. M., Gas Tables, New Age International, 2011		
2. Balacha	andran P., Gas Tables, Prentice-Hall of India Pvt. Limited, 2011	l	
Text Book	s.		
	andran P., Fundamentals of Compressible Fluid Dynamics, PHI	Learning, 200	06
	rishnan E., Gas Dynamics, PHI Learning, 2014	8	-
3. Yahya	S. M., Fundamentals of Compressible Flow with Aircraft and R	ocket Propuls	ion, New Age
	tional Publishers, 2003		
-			
Interna			
Internation Internation	s Books:	2012	
International In			ou & Song 1052

KTUQBANK.COM

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
Ι	Introduction to Compressible Flow- Concept of continuum-system and control volume approach- conservation of mass, momentum and energy- stagnation state- compressibility-Entropy relations. Wave propagation- Acoustic velocity-Mach number-effect of Mach number on compressibility- Pressure coefficient-physical difference between incompressible, subsonic, sonic and supersonic flows- Mach cone-Sonic boom-Reference velocities- Impulse function-adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.	8	15%
II	One dimensional steady isentropic flow- Adiabatic and isentropic flow of a perfect gas- basic equations- Area-Velocity relation using 1D approximation-nozzle and diffuser-mass flow rate-chocking in isentropic flow-flow coefficients and efficiency of nozzle and diffuser- working tables-charts and tables for isentropic flow- operation of nozzle under varying pressure ratios –over expansion and under expansion in nozzles.	7	15%
	FIRST INTERNAL EXAM		
ш	Irreversible discontinuity in supersonic flow- one dimensional shock wave- stationary normal shock- governing equations- Prandtl- Meyer relations- Shock strength- Rankine- Hugoniot Relation- Normal Shock on T-S diagram- working formula- curves and tables-Oblique shock waves - supersonic flow over compression and expansion corners (basic idea only).	7	15%
IV	Flow in a constant area duct with friction (Fanno Flow) – Governing Equations- Fanno line on h-s and P-v diagram- Fanno relation for a perfect gas- Chocking due to friction- working tables for Fanno flow- Isothermal flow(elementary treatment only)	6	15%
	SECOND INTERNAL EXAM		
v	Flow through constant area duct with heat transfer (Rayleigh Flow)- Governing equations- Rayleigh line on h-s and P-v diagram- Rayleigh relation for perfect gas- maximum possible heat addition- location of maximum enthalpy point- thermal chocking- working tables for Rayleigh flow.	6	20%
VI	Compressible flow field visualization and measurement- Shadowgraph-Schlieren technique- interferometer- subsonic compressible flow field -measurement (Pressure, Velocity and Temperature) – compressibility - correction factor- hot wire anemometer- supersonic flow measurement- Shock tube-Rayleigh Pitot tube- wedge probe- stagnation temperature probe- temperature recovery factor –Kiel probe - Wind tunnels – closed and open type- END SEMESTER EXAM	8	20%

Use of approved gas tables permitted

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

KTUQBANK.COM

ME431		Credits	Introduction
	MECHANICAL ENGINEERING LAB.	0-0-3-1	2016
rerequisite	e : ME302 Heat and mass transfer, ME304 Dynamics of mac	hinery	
Course Ob			
• T	o conduct the various heat transfer experiments		
• T	o practice calibration of thermometer and pressure gauges		
• T	o do experiments on dynamics		
Syllabus			
List of expe	eriments:		
Hear transf	fer		
	mination of LMTD and effectiveness of parallel flow, Counter	flow and cross	flow heat
	angers(double pipe heat exchanger)		
	mination of heat transfer coefficients in free convection(free co		,
	mination of heat transfer coefficients in forced convection (for	ced convection	apparatus)
	mination of thermal conductivity of solids(composite wall)		
	mination of thermal conductivity of powder		
	mination of Thermal conductivity of liquids		
	mination of emissivity of a specimen (emissivity apparatus)		
	mination of Stefan Boltzman constant (Stefan Boltzmann appar	atus)	
•	and performance test on refrigeration (Refrigeration Test rig)		
	and performance test air conditioning equipment(air condition	ing test rig)	
	rmance study on heat pipe(Heat pipe)		
	ration of Thermocouples		
	ration of Pressure gauge		
Dynamics			
	ling of shaft		
15. Gyros	1		
	ersal governor apparatus		
	vibration analysis		
	ed vibration analysis		
Note: Mi	inimum 9 experiments in heat transfer and 3 experiments in dyna	mics are mand	atory
Expected o			
	s will be able to		
	uct experiments to determine thermal conductivity of material	S	
	mine heat transfer coefficient, LMTD etc		
	alibration of thermometers and pressure gauges		
	onstrate the effect of unbalances resulting from rotary motions		
	lise the effect of dynamics on vibrations in single and multi de	-	•
	onstrate the working principle of governor /gyroscope and demo	onstrate the effe	ect of forces and

**451 Seminar and Project Preliminary 0-1-4-2 2016 Prerequisite : Nil Course Objectives • To develop skills in doing literature survey, technical presentation and report preparation. • To enable project identification and execution of preliminary works on final semester project	Course code	Course Name	L-T-P - Credits	Year of Introduction
Course Objectives • To develop skills in doing literature survey, technical presentation and report preparation. • To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly prepare own report and present in the class. Project preliminary: identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3 Formulation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and	**451	Seminar and Project Preliminary	0-1-4-2	2016
 To develop skills in doing literature survey, technical presentation and report preparation. To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly orepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3 Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation So marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 		Prerequisite : N	il	
 To develop skills in doing literature survey, technical presentation and report preparation. To enable project identification and execution of preliminary works on final semester project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly orepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3 Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation So marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 	Course Object	ives		
project Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly prepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Presente he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3 Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function (6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks Project preliminary : 50 marks(• To deve	lop skills in doing literature survey, techn	ical presentation and rep	port preparation.
Course Plan Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly prepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Preset he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience iii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks Project preliminary : 50 marks Project preliminary : 50 marks Project preliminary : 50 marks project sequation by the assessment board excluding external expert : 60%. Two progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semest	To enab	le project identification and execution of I	oreliminary works on fi	nal semester
Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly brepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3 Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Sominar Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) <td>project</td> <td></td> <td>FAT ALL</td> <td></td>	project		FAT ALL	
get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly brepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	Course Plan 🏑	API ARIMII I		
brepare own report and present in the class. Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Project preliminary : 50 marks Clistribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Project preliminary : 50 marks <				
Project preliminary: Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience iii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar Seminar : 50 marks (Distribution of marks for the seminar is as follows: i, Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Project preliminary : 50 marks Project preliminary : 50 marks Obscript project should be assessment board excluding external expert : 60%. Two progress evaluations by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	get approval of	f faculty concerned, collect sufficient lite	erature on the topic, stu	udy it thoroughly
Identify suitable project relevant to the branch of study. Form project team (not exceeding for students). The students can do the project individually also. Identify a project supervisor. Preservise he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report <i>Note:</i> The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Somarks Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Project prel			UICAL	
students). The students can do the project individually also. Identify a project supervisor. Present he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			ITV	
he project proposal before the assessment board (excluding the external expert) and get approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funct (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	•			-
 approved by the board. The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (2) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking function of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 				
The preliminary work to be completed: (1) Literature survey (2) Formulation of objectives (3) Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking funce (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)		-	cluding the external e	xpert) and get
Formulation of hypothesis/design/methodology (4) Formulation of work plan (5) Seeking func (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome . The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)				
 (6) Preparation of preliminary report Note: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to Analyse a current topic of professional interest and present it before an audience Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.) 	-	• •	• • •	
Vote: The same project should be continued in the eighth semester by the same project team. Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			nulation of work plan	(5) Seeking fund
Expected outcome. The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks Progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	· · ·	· · ·		
The students will be able to i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			semester by the same	project team.
 i. Analyse a current topic of professional interest and present it before an audience ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	-			
 ii. Identify an engineering problem, analyse it and propose a work plan to solve it. Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			d present it before on a	dianaa
Evaluation Seminar : 50 marks (Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	•		-	
Seminar: 50 marks(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%)Project preliminary: 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	II. Identify	an engineering problem, anaryse it and p	topose a work plan to s	orve n.
Seminar: 50 marks(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%)Project preliminary: 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	Evaluation		_	
(Distribution of marks for the seminar is as follows: i. Presentation : 40% ii. Ability to answer questions : 30% & iii. Report : 30%) Project preliminary : 50 marks(Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)		: 50 marks		
questions : 30% & iii. Report : 30%) Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)			resentation: 40% ii. A	bility to answer
Project preliminary : 50 marks (Progress evaluation by the supervisor : 40% and progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)				
progress evaluation by the assessment board excluding external expert : 60%. Two progress evaluations, mid semester and end semester, are mandatory.)	-	▲ 7	aluation by the supervi	sor : 40% and
evaluations, mid semester and end semester, are mandatory.)	5 1		- I	
				F 8
Note: All evaluations are mandatory for course completion and for awarding the final grade.	,		5 /	
2014	Note: All eval	uations are mandatory for course completion	on and for awarding the	e final grade.
2014				
2014				
		2014		

	code	Course Name	L-T-P	Credits	Year of Introduction
TEA	0.6	SUPPLY CHAIN AND LOGISTICS	2.0.0	2	0017
IE3 Prerequi		MANAGEMENT	3-0-0	3	2016
-					
c • T s • T	Γo dev hains. Γo dev upply	elop knowledge on structures, decision phases, i elop understanding on the strategic, tactical and chains. art knowledge on logistics management and i	operatio	onal decision	n tools of
network cycle ar	featur desig nd saf	es of supply chains, planning demand and supp n, locations, layouts etc. Supply chain inventor ety inventory systems: Logistics management: huling and sequencing. Advanced logistics decisio	y planni design	ing decision of transpor	s, multi-echelon
The i. U ii. U	studer Jnders Jnders	utcome tts will tand the structures, decision phases, measures and tand the strategic, tactical and operational decision tand knowledge on logistics management and relat	tools of	supply chain	ıs.
Text I 1. C		nivasan, Quantitative Models in Operations and Su		-	nent. PHI
2. S	Sunil C	Chopra, Peter Meindl, Supply Chain Management - Define Education.	– Strateg	y, i ianning a	
2. S P Refer 1. 2. 3.	Sunil C Pearson Pences Dav: Chai Dav: Man Don Jeren	1	ng and ions and agement, nson Lea	Managing t Supply Cha TMH. rning, 2001.	and Operation, he Supply
2. S P Refer 1. 2. 3. 4.	Sunil C Pearson Pences Dav: Chai Dav: Man Don Jeren	n Education. d Simchi – Levi & Philip Kaminsk, Designin n, McGraw-Hill Companies Inc. id Taylor and David Brunt, Manufacturing Operat agement, Vikas Thomson Learning, 2001. ald J. Bowersox & David J. Closs, Logistical Mana ny F. Shapiro, Modeling and Supply Chain,. Thom tin Christopher, Logistics and supply chain manage	ng and ions and agement, nson Lea	Managing t Supply Cha TMH. rning, 2001.	and Operation, he Supply
2. S P Refer 1. 2. 3. 4.	Sunil C Pearson Pences Dav: Chai Dav: Man Don Jeren	h Education. Id Simchi – Levi & Philip Kaminsk, Designin n, McGraw-Hill Companies Inc. Id Taylor and David Brunt, Manufacturing Operat agement, Vikas Thomson Learning, 2001. ald J. Bowersox & David J. Closs, Logistical Mana my F. Shapiro, Modeling and Supply Chain,. Thom tin Christopher, Logistics and supply chain manage COURSE PLAN	ng and ions and agement, nson Lea	Managing t Supply Cha TMH. rning, 2001.	and Operation, he Supply in es management. End-Sem.
2. S P Refer 1. 2. 3. 4. 5.	Sunil C Pearson Pences Dav: Chai Dav: Man Don Jeren Mar	n Education. d Simchi – Levi & Philip Kaminsk, Designin n, McGraw-Hill Companies Inc. id Taylor and David Brunt, Manufacturing Operat agement, Vikas Thomson Learning, 2001. ald J. Bowersox & David J. Closs, Logistical Mana ny F. Shapiro, Modeling and Supply Chain,. Thom tin Christopher, Logistics and supply chain manage	ng and ions and agement, nson Lea ement, F	Managing t Supply Cha TMH. rning, 2001. inancial time Hours	and Operation, he Supply in es management.

II	Planning Demand & Supply: Planning demand and supply in supply chains – Forecasting techniques for supply chains, Seasonal Forecasting Models, Measure of Forecast errors.	7	15%
	FIRST INTERNAL EXAM		
III	AggregatePlanning: Aggregate PlanningStrategies,AggregatePlanning models - Quantitative Examples.Network Design, Locations and Layouts:Network design inUncertainEnvironment, Facility Location and Layout decisions.	7	15%
IV	Multi-echelon Inventory Systems: Inventory Planning Decisions –Estimate of Cycle Inventory, Discounting Models, Multi-item Inventory models, Determination of Safety Inventory, Impact of Supply Uncertainty, Multi- echelon Inventory models, Quantitative Examples. Bullwhip effect.	7	15%
	SECOND INTERNAL		
V	Logistics Management : 3PL, 4PL, Design Options for Transportation Network. Routing, Scheduling and Sequencing in Transportation, Vehicle Routing Problems. Quantitative Examples.	7	20%
VI	Reverse Logistics: Reverse logistics and Closed Loop Supply Chains. Advanced Logistics Decision Models: Bin Packing Problems, Fixed Charge Problems, Knapsack Problems, Multi- stage transportation problems.	7	20%
	END SEMESTER EXAM		

End Semester Examination Question Paper Pattern

Examination duration: 3 hours

Maximum Marks: 100

Part A (Modules I and II):

Candidates have to answer any 2 questions from a choice of 3 questions. Each full question carries a total of 15 marks and can have a maximum of 4 sub questions (a, b, c, d). No two questions shall be exclusively from a single module. All three questions shall preferably have components from both modules. Marks for each question/sub question shall be clearly specified. Total percentage of marks for the two modules put together as specified in the curriculum shall be adhered to for all combinations of any two questions.

Part B (Modules III and IV):

(Same as for part A marks)

Part C (Modules V and VI):

(Same as for part A, except that each full question carries 20 marks)

Note: If use of tables and charts are permitted for the university examination for this course, proper direction of the same should be provided on the facing sheet of the question paper.

Course code		L -T-P- Credits		ear of duction
ME461	Aerospace Engineering	8-0-0-3	2	016
	Prerequisite : Nil			
	bjectives: :			
	understand the fundamentals of aerospace engineering			
• To	provide an understanding of flight instruments			
Syllabus:				
	sphere, airfoil theory, 2D, 3D or Finite aero foils Propeller ruments, stability of aircrafts, wind tunnel testing	rs, Aircra	aft perf	ormance,
Expected	Outcomes:			
The stude	nts will be able to			
	i. Identify, formulate and solve aerospace engineering prob	lems		
Text bool	i. Perform analysis of flight dynamics of aircrafts			
	C. Kermode, Mechanics of flight, Prentice Hall, 2007			
	iderson, Fundamentals of Aerodynamics, McGraw-Hill, 2010			
	IJ Pallett, Aircraft Instruments and Integrated systems, Longm	an,1992		
Reference				
1. Ho	bughton and brock, Aerodynamics for Engineering Student, Ho	odder & S	Stought	on,1977
	COURSE PLAN			
Module	Contents	I	Hours	End Sem. Exam. Marks
	The atmosphere-characteristics of troposphere, stratosph thermosphere, and ionosphere- pressure, temperature and de variations in the atmosphere. Application of dimensional and	nsity		
Ι	 aerodynamic force – model study and similitude. 2D aero Nomenclature and classification- pressure distribution inviscid and real flows- momentum and circulation theor aerofoil- characteristics. 	foils n in	8	15%
п	3D or Finite aero foils – effect of releasing the wingtips- tip vortices- replacement of finite wing by horse shoe v system, lifting line theory-wing load distribution – aspect induced drag calculation of induced drag from mome considerations. Skin friction and from drag- changes in wing plan shape	ertex ratio, ntum	7	15%

ш	Propellers – momentum and blade element theories –propeller coefficients and charts. Aircraft performance-straight and level flight –power required and power available graphs for propeller and jet aircraft	6	15%
IV	Gliding and climbing –rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance – length of runway required- aircraft ground run- circling flight – radius of tightest turn-jet and rocket assisted take –off high lift devices-range and endurance of airplanes- charts for piston and jet engine aircrafts.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Flight Instruments-airspeed indicator, calculation of true air speed-altimeter, gyrohorizon -direction indicator-vertical speed indicator –turn and back indicator-air temperature indicator. (Brief description and qualitative ideas only). Ideas on stability- static and dynamic stability- longitudinal, lateral and directional stability- controls of an aero plane- aerodynamic balancing of control surfaces- mass balancing (Qualitative ideas only).	7	20%
V1	Principles of wind tunnel testing –open and closed type wind tunnels-wind tunnel balances supersonic wind tunnels. Study of subsonic, Transonic, and supersonic aircraft engines (Description with figures Only).Elementary ideas on space travel-calculation of earth orbiting and escape velocities ignoring air resistance and assuming circular orbit.	7	20%

END SEMESTER EXAMINATION Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	code	Course Name	L-T-P- Credits	Year of Introduction
ME46	63	Automobile Engineering	3-0-0-3	2016
Pre requi	sites: N	Jil		
Course of	bjectiv	es		
• To	unders	the anatomy of automobile in general stand the working of different automotive systems and the latest developments in automobiles	subsystems	5
Syllabus:	- Engin	e, clutch, transmission, steering, brakes, suspension an	d aerodyna	mics
COURSE	C OUT	COMES:		
The stude	nts will	be able to:		
i. Pra	acticall	y identify different automotive systems and subsystem	S.	
au	tomobi	nd the principles of transmission, suspension, steering le a strong base for understanding future developments in		
iii. De	evelop a	a strong base for understanding future developments in	the automo	oblie mausu y
 Heinz Hillier 	Heisler and Pe	r, Advanced engine technology, Butterworth-Heineman r, Advanced vehicle technology, Society of Automotive eter Coobes, Fundamentals of motor vehicle technolog Automobile mechanical and electrical systems, Butter	e Engineers y, Nelson T	Thornes, 2004
		Course Plan	-	
Module		Contents	Hours	End Sem. Exam. Marks
		: - material for piston, clearances, piston rings, types, for two compression rings, oil control ring, piston pin.	1	
	rod, c	for IC engine, piston rings, piston pin, connecting rank shaft, crank pin, cam shaft, valves, fly wheel,	1	
I		ation of energy and size of fly wheel, hub and arms, in a fly wheel rim, simple problems.	1	15%
•	and ca	fuel injection systems: - comparison petrol injection arbureted fuel supply systems- comparison -multiport	1	1.5 /0
	(CRD	njection (MPFI) and common rail direct injection I) systems.	1	
	-	charging systems: fundamentals, naturally aspirated es and supercharged engines- Turbo charger, turbo	1	

	Hybrid cars, safety overview -Formula-I engine technology: overview, electrical technology, brakes, transmission technology.	1	
	Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear –angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out.	1	
	Pull type diaphragm clutch, multiple diaphragm clutch, multi-plate hydraulically operated automatic transmission	1	150/
II	clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch.	1	15%
	Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse	1	
	sliding mesh, constant mesh, and synchromesh gear boxes:- gear synchronization and engagement.	1	
	Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque	1	
	converters.	1	
	FIRST INTERNAL EXAMINATION		
	Steering:-basic principle of a steering system:- swinging beam system – Ackermann –over steer and under steer –	1	
	slip angle, camber, caster etc.	1	
	Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out	1	
III	Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box –	1	15%
	Re-circulating ball nut and rocker lever, re-circulating ball rack and sector steering gear box– need of power assisted	1	
	steering.	1	
	External direct coupled and rack and pinion and integrated steering power cylinder, power assisted steering lock limitations	1	
IV	Suspension: - suspension geometry, terminology- Macpherson strut friction and spring offset - suspension roll centers:-roll centers, roll axis, roll centre height, short swing and long arm suspension, transverse double	1	
	wishbone, parallel trailing double arm and vertical pill strut suspension, Macpherson strut suspension, semi-trailing arm rear suspension, telescopic suspension.	1	15%
	High load beam axle leaf spring, sprung body roll stability. Rear axle beam suspension- body roll stability analysis:- body roll couple, body roll stiffness, body over turning couple	1	

	Body weight transfer, body direct weight transfer couple, body roll couple distribution, body roll weight transfer, lateral force distribution.	1	
	Anti roll bars and roll stiffness:- anti roll bar function, operating principle, anti roll bar action caused by the body rolling, single wheel lift -rubber spring bumper:-bump stop function and characteristics, axis inclination.	1	
	Rear suspension: - live rigid axle suspension, non drive rear suspension- swing arm rear wheel drive independent suspension.	1	
	Low pivot split axle coil spring wheel drive independent suspension, trailing and semi trailing arm rear wheel drive independent suspension.	1	15%
	Transverse double link arm rear wheel drive independent suspension, De Dion axle rear wheel suspension - Hydrogen suspension, hydro-pneumatic automatic height correction suspension.	1	
	SECOND INTERNAL EXAMINATION		
	Brakes:- mechanical and hydraulic brakes (review only) – properties of friction lining and pad materials, efficiency, stopping distance, theory of internal shoe brake, equations –	1	
	effect of expanding mechanism of shoes on total braking torque, equations.	1	
	Braking vehicles:- brakes applied on rear, front and all four wheels, equations –calculation of mean lining pressure and	1	
V	heat generation during braking operation, equations. – braking of vehicle moving on curved path, simple problems.	1	20%
	Anti Lock Braking system (ABS):- need and advantages of ABS – hydro-mechanical ABS - hydro-electric ABS - air-electric ABS.	1	
	Brake servos: - operating principle, vacuum servo - direct acting suspended vacuum assisted brake servo unit operation - hydraulic servo assisted brake systems.	1	
	Pneumatic operated disc brakes – air operated brake systems: - air over hydraulic brake system - Three line brake system-– electronic-pneumatic brakes.	1	
	Aerodynamic drag: pressure drag, air resistance, opposing motion of a vehicle, equations, after flow wake, drag	1	
V1	coefficients, various body shapes, base drag, vortices, trailing vortex drag, attached transverse vortices.	1	• •••
			20%
V1	Aerodynamic lift:-lift coefficients, vehicle lift, underbody floor height versus aerodynamic lift and drag, aerofoil lift	1	

slope and wind screen rake, roof and side panel chamfering, rear side panel taper, underbody rear end upward taper, rear end tail extension, underbody roughness.	
Aerodynamic lift control:- underbody dams, exposed wheel air flow pattern, partial enclosed wheel air flow pattern, rear end spoiler, negative lift aerofoil wings.	1
After body drag: - square back drag, fast back drag, hatch back drag, notch back drag.	1
END SEMESTER EXAMINATION	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Course code		L-T-P- Credits	-	ar of duction				
ME465	Industrial Hydraulics	3-0-0-3	2	016				
	Prerequisite : Nil							
1. To :	Course Objectives: : 1. To introduce various fluid power systems 2. To get knowledge on fluid power circuits							
and rams,	n to fluid power, Properties of fluids. Selection of fluids, Pu Fluid power pumping systems and components, Hyd e control, Piping systems, Control circuits							
1. To 2. To	Dutcomes: ts will be able understand the various components used in fluid power syste select the suitable system for a particular application know the various fluid circuits used in hydraulic systems	ems						
2. D. 4 3. J. J 4. Pine	s: Lall, Oil Hydraulics, International Literature Association A. Pease, Basic Fluid Power, Prentice Hall,1986 T. Pipenger, <u>Tyler Gregory Hicks</u> , Industrial Hydraulics, McC ches, Industrial Fluid Power, Prentice Hall,1989 C. Bansal, Fluid Mechanics, Laxmi Publication (P) Ltd.,2017	Graw Hill	,1979					
References 1. ISC 2. And 3. Mic		Hall,198	8					
	COURSE PLAN							
Module	Contents]	Hours	End Sem. Exam. Marks				
Ι	Introduction to fluid power – Hydraulics and Pneumatics sy – Fluid power systems – Fundamentals of fluid mecha Properties of fluids. Selection of fluids, additives, effe temperature and pressure on hydraulic fluids, Measurem physical parameters – Hydraulic symbols	unics , ect of	7	15%				
II	Pumps: Types , classification , principle of workin constructional details of vane pump, gear pumps, radial and plunger pumps, Power and efficiency calculations, char, C selection of pumps for hydraulic power transmission	axial	7	15%				
	FIRST INTERNAL EXAMINATION							

III	Hydraulic cylinders and rams – Fluid power pumping systems and components. Pressure accumulators – Functions – Fluid reservoirs – Filter in hydraulic circuits. Loading and replacement of filter elements – Materials for filters.	7	15%
IV	Hydraulic Actuators (i) Linear and Rotary. (ii) Hydraulic motors - Types- Vane, Gear, Piston types, radial piston. (iii) Methods of control of acceleration, deceleration. (iv) Types of cylinders and mountings. (v) Calculation of piston velocity, thrust under static and dynamic applications, considering friction, inertia loads. (vi) Design considerations for cylinders. Cushioning of cylinders.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Fluid temperature control – Fluid pressure control –control valves – Sequence -valve – Counterbalance valve-unloading valve – Friction control valve – Servo systems, Hoses & Pipes : Types , materials , pressure drop in hoses/pipes. Hydraulic piping connections.	7	20%
V1	Simple reciprocating, Regenerative, Speed control (Meter in, Meter out and bleed off), Sequencing, Synchronization, transverse and feed, circuit for riveting machine, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, circuit for hydraulic press, unloading circuit (Numerical treatment), motor breaking circuit	7	20%
	FND SEMESTER EXAMINATION		

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code		L -T-P- Credits	-	ar of duction
ME467	Cryogenic Engineering 3	3-0-0-3	2	016
	site : NIL	0-0-0-3	4	010
-	Dejectives: :			
	provide the knowledge of evolution of low temperature science	e		
	p provide knowledge on the properties of materials at low temp			
	b familiarize with various gas liquefaction systems and to provide		n asnec	ts of
	yogenic storage and transfer lines	de desig	n aspec	15 01
Syllabus				
•	on to Cryogenics, Applications of Cryogenics, Properties of	f materia	als at c	rvogenic
	ire, Liquefaction systems, Gas liquefaction systems, Cryogenic			
-	c fluid storage and transfer systems, Cryogenic instrumentation,	-		-
cryogenic		,		
	Outcomes:			
-	ents will be able to			
	i. Understand properties of material at cryogenic temperature	es.		
i	i. Know about various liquefaction systems			
ii	i. Get ideas on cryogenic refrigeration systems, cryogen	nic instr	umenta	tion and
	cryogenic heat exchangers			
Text boo	ks			
1. J.	H. Boll Jr, Cryogenic Engineering			
2. R.	B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959			
3. Ra	andal F.Barron, Cryogenic systems, McGraw Hill, 1986			
	e books: laus D.Timmerhaus and Thomas M.Flynn, Cryogenic Proces ress, New York, 1989.	ss Engir	neering,	Plenum
Module	Contents	1	Hours	End Sem. Exam. Marks
I		anical ties – Food blogy,	8	15%
II	Liquefaction systems ideal system, Joule Thomson expar Adiabatic expansion, Linde Hampson Cycle, Claude & Case System, Magnetic Cooling, Stirling Cycle Cryo Coolers. FIRST INTERNAL EXAMINATION		7	15%

III	Gas liquefaction systems: Introduction-Production of low temperatures-General Liquefaction systems- Liquefaction systems for Neon. Hydrogen and Helium –Critical components of Liquefaction systems	6	15%
IV	Cryogenic Refrigeration systems: Ideal Refrigeration systems- Refrigeration using liquids and gases as refrigerant- Refrigerators using solids as working media;,	6	15%
	SECOND INTERNAL EXAMINATION		-
V	Cryogenic fluid storage and transfer systems: Cryogenic Storage vessels and Transportation, Thermal insulation and their performance at cryogenic temperatures, Super Insulations, Vacuum insulation, Powder insulation, Cryogenic fluid transfer systems.	8	20%
V1	Cryogenic instrumentation, Pressure flow-level and temperature measurements. Types of heat exchangers used in cryogenic systems(only description with figure) Cryo pumping Applications	7	20%
	END SEMESTER EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code		L-T-P- Credits	Year Intro	of oduction
ME46	9 FINITE ELEMENT ANALYSIS	3-0-0-3	2	016
	Prerequisite : Nil			
Course O	bjectives			
1. To lea	rn the mathematical background of finite element methods.			
2. To un	derstand the basics of finite element formulation.			
3. To pr	actice finite element methodologies through structural and heat trans	sfer probl	ems.	
problems; functions; using min	on; Brief history; Review of elasticity; Direct approach;1D bar Beam elements; Plane truss; Coordinate transformations; Interpol Variational methods; Strong and weak form; Rayleigh Ritz met imization of potential; Consistent nodal loads; Higher order ele Weighted residual methods; FEA software packages.	ation fun thod; FE	ctions; E formu	Shape lation
Expected	outcome			
The stude	ts will be able to			
i. und	erstand the mathematical background of FEM.			
ii. solv	e real life problems using finite element analysis			
2004 2. Hutto 3. Loga	drupatla T R., Finite Element Analysis for Engineering and Techno on D V., Fundamentals of Finite Element Analysis, Tata McGraw-H n D L., A first course in the Finite Element Method, Thomson-Eng a P., Text Book of Finite Element Analysis, PHI Learning Pvt. Ltd.	Hill, 2005 ineering,	i	y Press,
Elem	s Books : R D., Malkus D S., Plesha M E.,Witt R J., Concepts and Analysis ent Applications, John Wiley & Sons,1981 y J N., An introduction to the Finite Element Method, McGraw- H			
	Course			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Introduction to Finite Element Method (FEM)- Brief history- Appl of FEA- Advantages and disadvantages. Review of elasticity- Strain displacement relations- Compatibility- strain relations- Boundary conditions- Plane stress, plane strain and axisymmetry.	Stress	2	15%

	Direct approach-1D bar element- element stiffness- Assembly of elements- properties of [K] matrix- Treatment of boundary conditions- Stress computation.	4		
п	Analogous problems of torsion, heat conduction and laminar pipe flow. Beam elements- FE formulation-element stiffness matrix- boundary conditions.	4	20%	
	Plane truss- Element formulation-Co ordinate transformation- Local and global co ordinates- Stress calculations.	4	2070	
	FIRST INTERNAL EXAMINATION	1		
ш	Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element	3	15%	
	Variational methods: Functionals- Strong and weak form- Essential and natural boundary conditions.	3	1370	
	Principle of stationary potential energy- Rayleigh Ritz method.	3	20%	
IV	FE formulation using minimization of potential- B matrix- Element matrices for bar element- Consistent nodal loads.	4		
	SECOND INTERNAL EXAMINATION			
V	Higher order elements- Quadratic and cubic elements-Pascal's triangle- Serendipity elements.	3	15%	
	Iso parametric elements, Natural coordinates, Area co ordinates- Quadrilateral elements-Jacobian matrix-Gauss quadrature.	5		
	Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar	5	15%	
VI	Structure of FEA software package. Introduction to Modal analysis, non linear analysis and coupled analysis.	2		
	END SEMESTER EXAMINATION			

Question Paper Pattern

Maximum marks: 100,

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits		ear of duction
ME471	Optimization Techniques	3-0-0-3	2	016
Prerequis	ite - ME372 Operations Research			
Course O	ojective:			
• To	learn the various optimization techniques for effective deci	ision making	g.	
Syllabus:				
Linear pro	gramming – integer programming- network models – go	al programi	ming – o	dynamic
programm	ing – nonlinear programming – nontraditional optimization	l .		
Expected	Outcome:			
• Th	e students will be able to understand optimization tech	niques and	apply	them in
sol	ving practical problems			
Text Book	s:			
Wi 2. Pai 3. Pai 200	 Iler, D. M. and Schmidt, J. W., Industrial Engineering and Cley & Sons, Singapore, 1990. heerselvam, R., Operations Research, Prentice Hall of India Interselvam, R., Design and Analysis of Algorithms, Prentice 07. ha, H. A., Operations Research, Pearson, 2004. 	ı, New Delh	i, 2008.	
Reference	Books:			
Sir 2. Go 3. Ra Sor 5. Sri	nks, J., Carson, J. S., Nelson, B. L., and Nicol, D. I nulation, Third Edition, Pearson Education, Inc., 2001 el, B. S. and Mittal, S. K., Operations Research, Pragati Pra vindran, Phillips and Solberg, Operations Research Princip ns, 1987 nivasan, G. "Operations Research-Principles and Applic . Ltd.	akashan, Me ples and Pra	eerut, 19 actice, V	99. Villey &
	Course Plan			
Module	Contents]	Hours	End Sem. Exam. Marks
I	Review of linear programming– revised simplex method	_	1 1	15%
	Dual simplex method		1	

		1	
		1	
	Sensitivity analysis - changes affecting feasibility - changes	1	
	affecting optimality	1	
	Integer programming – importance – applications	1	
	Branch and bound technique	1	
		1	4 = 0 (
II	Gomory's cutting plane method	<u>1</u> 1	15%
-		1	
	Solution to travelling salesman problem	1	
	FIRST INTERNAL EXAMINATION		
_	Network models – minimal spanning tree problem	1	
	PRIM's algorithm	1	
	Kruskal's algorithm	1	
III	Shortest route problem –applications	1	15%
	Systematic method	1	
	Dijkstra's algorithm	1	
	Floyd's algorithm	1	
		1	
	Goal programming – goal programming formulation-application.	1	
	Simpley method for solving goal programming	1	
IV	Simplex method for solving goal programming	1	15%
	Dynamic programming – terminologies – forward and backward recursion –applications	1	10 /0
	Shortest path problems	<u>1</u> 1	
	SECOND INTERNAL EXAMINATION		
	Nonlinear programming – convex, quasi-convex, concave and	1	
	unimodal functions – theory of constrained optimization	1	
	uninodal functions – theory of constrained optimization	1	
V	Lagrangean method	1	20%
		1	
	Kuhn-Tucker conditions	1	
		1	
	Nontraditional optimization - computational complexity-	1	
	Introduction to metaheuristics – areas of application	1	
X 7 X	Genetic algorithm (GA) – terminologies – steps and examples Tabu search (TS) – steps and examples	1	20%
VI		1	
VI	rubu beuren (16) blepb und enumpteb		
VI -		1	
VI -	Simulated annealing (SA) – steps and examples Ant colony optimization (ACO) – steps and examples – Particle		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Ktu **Q** bank

Course code	e Course Name L-T- Cred			lear of coduction
ME30				2016
Prerequisi				
	bjectives de knowledge on kinematics of selected mechanisms, design o of gears, gear trains and synthesis of mechanisms.	f can	ns, the	ory and
accelerat cam prof	tion to kinematics and mechanisms - different mechanisms, displation analysis. Cam and followers - displacement, velocity, and file synthesis. Gears – law of gearing, interference, gear trains, apply - dimensional synthesis, graphical synthesis, position synthesis, ly.	accele olicati	eration	analysis, Kinematic
The stude Text Bo 1. Balla	d outcome . nts will be able to solve practical problems related to kinematics of oks: nney P. L., Theory of Machines and Mechanisms, Khanna Publishe Rattan, Theory of Machines, Tata Mc Graw Hill,2009			ns
Referen				
 D. I Educ G. En Hall Ghos 	 Wilson, P. Sadler, Kinematics and Dynamics of Machinery, Pears H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGround Mechanisms, Mechanis	e Ar s Vol ast W	nalysis I & I Vest Pr	, Pearson I, Prentice ess,1988
 D. I Educ G. En Hall Ghos 	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E	e Ar s Vol ast W	nalysis I & I Vest Pr	, Pearson I, Prentice ess,1988
 D. I Educ G. En Hall Ghos 	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McG	c Ar s Vol ast W raw H	nalysis I & I Vest Pr	, Pearson I, Prentice ess,1988
 D. I Educ G. E Hall Ghos J. E. 	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGr Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof' criterion, inversions, coupler curves	c Ar s Vol ast W aw H	I & I Vest Pr	, Pearson I, Prentice ess,1988 .0 Sem. Exam
 D. I Educ G. E Hall Ghos J. E. 	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGr Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof'	c Ar s Vol ast W aw H H S s 2 1	nalysis. I & I Vest Pr (ill,201 (ours 3	, Pearson I, Prentice ess,1988 .0 Sem. Exam
 D. I Educ G. Ei Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGa Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof' criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem	c Ar s Vol ast W aw H B S S S S S S S S S S S S S S S S S S	nalysis. I & I Vest Pr (ill,201 (ours 3	, Pearson I, Prentice ess,1988 .0 Sem. Exam Marks
 D. I Educ G. En Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGr Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof' criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem Relative acceleration - Coriolis acceleration - graphical and analytical methods – complex number methods - compute oriented methods.	c Ar s Vol ast W aw H H S S S S S S S S S S S S S S S S S S	1 & I I & I /est Pr fill,201 fours 3	, Pearson I, Prentice ess,1988 0 Sem. Exam Marks 15%
 D. I Educ G. Ei Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGr Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof' criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem Relative acceleration - Coriolis acceleration - graphical and analytical methods – complex number methods - compute	c Ar s Vol ast W raw H H s s 3 s 3 n - 2 t 2	1 & 1 /est Pr /ill,201 /ours 3 4	, Pearson I, Prentice ess,1988 .0 Sem. Exam Marks
 D. I Educ G. E Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinemati ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesi of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated E Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGa Course Plan Course Plan Contents Introduction to kinematics and mechanisms - variou mechanisms, kinematic diagrams, degree of freedom- Grashof' criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem Relative acceleration - Coriolis acceleration - graphical and analytical methods – complex number methods - compute oriented methods. Cams - classification of cam and followers - displacement diagrams, velocity and acceleration analysis of SHM, uniform	c Ar s Vol aast W raw H H S S S S S S S S S S S S S S S S S S	1 & 1 /est Pr /ill,201 /ours 3 4 4	, Pearson I, Prentice ess,1988 0 Sem. Exam Marks 15%

	Analysis of tangent cam with roller follower and circular cam with flat follower	6	
	Introduction to polynomial cams.	2	1
IV	Gears – terminology of spur gears – law of Gearing - involute spur gears involutometry - contact ratio - interference - backlash - gear standardization - interchangability	4	15%
	Non-standard gears, centre distance modification, long and short addendum system internal gears - theory and details of bevel, helical and worm gearing	4	
	SECOND INTERNAL EXAMINATION		
V	Gear trains - simple and compound gear trains - planetary gear trains – differential -solution of planetary gear train problems - applications	5	20%
	Kinematic synthesis (planar mechanisms) - tasks of kinematic synthesis – type, number and dimensional synthesis – precision points	4	
	Graphical synthesis for motion - path and prescribed timing - function generator	3	20%
VI	2 position and 3 position synthesis – overlay Method Analytical synthesis techniques, Freudenstein's equation – complex number methods - one case study in synthesis of mechanism.	3	-
	END SEMESTER EXAM		1

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
ME303	MACHINE TOOLS AND DIGITAL MANUFACTURING	3-0-0-3	2016

Prerequisite: Nil

Course Objectives: The main objectives of this course are

1. To introduce students to the scientific principles underlying material behavior during manufacturing processes so as to enable them to undertake calculations of forces, tool stresses and material removal rates.

- 2. To understand various machine tools such as lathe, drilling machine, reciprocating machines etc. and their operations.
- 3. To impart knowledge of appropriate parameters to be used for various machining operations.
- 4. To develop knowledge on the importance of milling grinding and super finishing in metal cutting process.
- 5. To introduce the fundamentals of digital manufacturing.

Syllabus

Introduction to metal cutting, Mechanism of metal removal, Merchants theory, Frictional forces in metal cutting, Thermal aspects of machining, General purpose machine tools, Principle and operation of lathe, Drilling machines, Reciprocating machines, Milling machines, Grinding machines, Super finishing operations, Semi-automatic machine tools, Single and multi-spindle machines, Introduction to digital manufacturing and digital manufacturing science.

Expected outcomes:

The students will be able to

- 1. Analyze various machining process and calculate relevant quantities such us velocities, forces and powers.
- 2. Identify and explain the function of the basic components of a machine tool.
- 3. Understand the limitations of various machining process with regard to shape formation and surface texture.
- 4. Apply cutting mechanics to metal machining based on cutting force and power consumption.
- 5. Understand the use of various machine tools and their fields of application.
- 6. Understand the principle and applications of grinding and super finishing operations.

7. Get a basic knowledge on the importance of digital manufacturing.

Text books

- 1. Chapman W. A. J., Workshop Technology, Viva books (P) Ltd, 1988
- 2. HMT, Production Technology, Tata McGraw-Hill,2001
- 3. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited,2012

Reference books

- 1. Acharkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication, 2000
- 2. Chernov, Machine Tools, MIR Publication, 1984
- 3. Ghosh A. And Malic A. K., Manufacturing Science, East West Press, 2010
- 4. Hajra Choudary, Elements of workshop technology, Vol I & II, Media Publishers, 2010
- 5. Lihui Wang and Andrew Yeh Ching Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009
- 6. Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press, 2008
- 7. Poul De Garmo, J.T.Black, R.A.Kosher, Materials and Processes in Manufacturing, Prentice Hall of India Pvt. Ltd., 1997.

	Course Plan		
Module	Contents	Hours	End Sem. Exam. Marks
	Introduction to metal cutting: Tool nomenclature – Attributes of each tool nomenclature – Attributes of feed and tool nomenclature on surface roughness obtainable	1	
	Orthogonal and oblique cutting - Mechanism of metal removal – Primary and secondary deformation shear zones	1	
	Mechanism of chip formation – Types of chips, need and types of chip breakers – Merchant's theory	1	
Ι	Analysis of cutting forces in orthogonal cutting– Work done, power required (simple problems)	1	15%
	Friction forces in metal cutting – development of cutting tool materials	1	
	Thermal aspects of machining -Tool wear and wear mechanisms	1	
	Factors affecting tool life– Economics of machining (simple problems) Cutting fluids	1 1	
	General purpose machine tools – Principle and operation of lathe – Types of lathes and size specification	1	
	Work holding parts of lathes and their functions – Main operations		
	Taper turning and thread cutting – Attachments	1	
II	Feeding mechanisms, Apron mechanisms	1	15%
	Drilling Machines – Types – Work holding devices	1	
	Tool holding devices – Drill machine operations	1	
	Drilling machine tools – Twist drill nomenclature- cutting forces in drilling.	1	
	FIRST INTERNAL EXAMINATION	1	
III	Reciprocating machines: Shaping machines – Types – Size – Principal parts – Mechanism	1	15%
	Work holding devices – Operations performed – Tools	1	

	Cutting speed, feed and depth of cut – Machining time.	1	
	Slotting machines – Types – Size – Principal parts – Mechanism –	1	
	Work holding devices	1	
	Operations performed – Tools – Cutting speed, feed and depth of		
	cut	1	
	Planing machines – Types – Size – Principal parts – Mechanism –		
	Work holding devices	1	
	Operations performed – Tools – Cutting speed, feed and depth of		
	cut – Machining time- Surface roughness obtainable.	1	
	Milling machines – Types – Principal parts – Milling mechanism	1	
	Work holding devices – Milling machine attachments	1	
	Types of milling cutters – Elements of plain milling cutters	1	
IV	Nomenclature - Cutting forces in milling – Milling cutter materials	1	15%
	Up milling, down milling and face milling operations	1	
	Calculation of machining time	1	
	Indexing – Simple indexing – Differential indexing	1	
	SECOND INTERNAL EXAMINATION		
	Grinding machines - Classification - Operations - Surface,	1	
	cylindrical and centreless grinding	1	
	Grinding mechanisms - Grinding wheels: Specification - types of	1	
	abrasives, grain size	1	
	Types of bond, grade, structure – Marking system of grinding	1	
	wheels – Selection of grinding wheels	1	
	Glazing and loading of wheels – Dressing and Truing of grinding	1	
\mathbf{V}	wheels, surface roughness obtainable	1	20%
v	Superfinishing operations: Lapping operation– Types of hand	4	2070
	lapping – Lapping machines – Types of honing –Methods of	1	
	honing		
	Types of honing stones – Honing conditions – Cutting fluids –	1	
	Types of broaches – Force required for broaching – Surface	1	
	roughness obtainable in lapping, honing and broaching operations.		
	Semi-automatic machine tools – Turret and capstan lathes. Automatic machine tools – Single and multi-spindle machines.	1	
	Introduction to Digital Manufacturing: Concepts and research and		
	development status of digital manufacturing	1	
	Definition of digital manufacturing – Features and development of		
	digital manufacturing.	1	
	Theory system of digital manufacturing science: Operation Mode		
	and Architecture of Digital Manufacturing System	1	
V1	Operation reference mode of digital manufacturing system –		20%
	Architecture of digital manufacturing system	1	
	Modeling theory and method of digital manufacturing science	1	
	Critical modeling theories and technologies of digital		
	manufacturing science	1	
	Theory system of digital manufacturing science – Basic	1	

architecture model of digital manufacturing system.	
END SEMESTER EXAM	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

Course cod	e Course Name	L-T-P- Credits	Year of Introdu	otion
ME305	COMPUTER PROGRAMMING & NUMERICAL	2-0-1-3	2016	
	METHODS	- • • • •	-010	
Prerequisite				
Course Obj	ectives:			
• To eq	ip students with fundamentals of computer programming			
	ovide fundamental idea about the use of computer program	ming and nu	merical me	ethods for
	zing the basic engineering problems.			
Syllabus				
	to computer programming concept, control statements, basic	-		
5	Errors and approximations, curve fitting, Solution of Partial	differential e	quations, N	Jumerical
*	preparation of computer programs.			
Expected ou			c	
	udents will be able to write computer programs for nume	erical solution	ons for eng	gineering
	ems like system of equations and heat equations			
Text Books	umusernu Commuter Dresserning 1. McCrow Hill Educe	tion 2012		
	urusamy, Computer Programming 1e McGraw Hill Educa urusamy, Numerical Methods 1e McGraw Hill Education,			
	S., Computer Programming and Numerical Methods, Pent			
	nandran D., Programming with C++, Tata McGraw Hill, 2	0		
Reference B		.007.		
	uruswamy E., Object Oriented Programming with C++, Ta	ata McGraw	Hill, 1992	
	kati N., Object Oriented Programming in C++, SAMS, 19		,	
3. Geral	C. F. and P. O. Wheatley, Applied Numerical Analysis,	Pearson,2004	ŀ.	
	nane A. M., Object Oriented Programming with ANSI & 7			
	nan S. B. and J. Lajoie, C++ Primer, Pearson Education, 20	005.		
Pearso	on Education, 2009.			
	Course Plan			a
				Sem.
Module	Contents		Hours	Exam
Int	oduction to Computer programming concept –internal repr	recontation of		Marks
	a - Algorithm and flow chart, Basics of procedure oriente			
	ented programming. Introduction to C++: Structure of C			
Ke	words; Identifiers; Data types – integer, real, character, str	1 0		
	meration, Constant and Variables; Operators - assignment			15%
		al operators		
	tional, logical, increment, decrement and conditional	-		
stre	tements - simple & compound, declaration statements. Inp	-		
II		-		
	tements – simple & compound, declaration statements. Inp ams. ontrol statements: if, if-else, switch, for, while,	ut and output do-while	,	
II b:	tements – simple & compound, declaration statements. Inpams. ontrol statements: if, if-else, switch, for, while, ceak and continue statements, Arrays – one dimens	ut and output do-while ional & two	7	15%
II bi	tements – simple & compound, declaration statements. Inprams. ontrol statements: if, if-else, switch, for, while, ceak and continue statements, Arrays – one dimensional; Functions: inline functions, function over loading	ut and output do-while ional & two	7	15%
II bi	tements – simple & compound, declaration statements. Inpams. ontrol statements: if, if-else, switch, for, while, ceak and continue statements, Arrays – one dimens	ut and output do-while ional & two	7	15%

III	Basics of Pointers. Function call by value, call by reference. Preparation of programs for evaluation of Factorial of a number, infinite series, Sorting, Searching and Matrix multiplication.		15%		
IV	Introduction to Class and Object- definition, data members, member function. private & public member functions, member access, friend declaration, class objects, predefined classes, initialization. Inheritance- base class and derived class. Simple programs using the above features. (No programming questions for University examination and internals)	7	15%		
	SECOND INTERNAL EXAM				
V	Errors and approximations, sources of errors. Solution of linear system of equations: Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Interpolation: Lagrange and Aitken techniques.		20%		
VI	Curve fitting: method of least squares, non-linear relationships, Linear correlation, measures of correlation. Solution of Partial differential equations: classification, Laplace equation, Finite difference method. Numerical problems and preparation of computer programs for the above methods	8	20%		
	END SEMESTER EXAM				

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code.	Course Name	L-T-P - Credits	Year of Introduction
EE31	ELECTRICAL DRIVES & CONTROL FOR AUTOMATION	3-0-0-3	2016
Prerequisi			
Course C			
1. To pe 2. To	o understand the basic concepts of different types of electri rformance. I know the different methods of starting D.C motors and in I introduce the controllers for automation		
	hines, transformers, three phase induction motor, single pontrollers for automation.	hase induction	n motor, stepper
Expecte	d outcome .		
The stude	nts will be able to		
	lect a drive for a particular application based on power rational	0	
	lect a drive based on mechanical characteristics for a partic	cular drive app	plication.
3. Di Text Bo	scuss the controllers used for automation		
3. Ri 4. M Lt 5. Th Ca 6. Va 20 Referen 1. H. 2. M	ces: Partab, Art and Science and Utilisation of electrical energy D.Singh, K. B. Khanchandani, Power Electronics, Tata N llai.S,K A first course on Electric drives, Wiley Eastern Li	ystems, Elsevi ronics, S. Cha Fechnology, S. ations), Tata M y, Dhanpat Ra IcGraw-Hill, 1	ier, 2013 ind & Company . Chand & McGraw- Hill, i and Sons, 1994
	Course Plan		
Module	Contents		ours Exam Marks
Ι	DC Machines-principle of operation-emf equation-texcitations. Separately excited, shunt and series excigenerators, compound generators. General idea of armature OCC and load characteristics - simple numerical problems.	e reaction,	5 15%
п	Principles of DC motors-torque and speed equations-torque characteristics- variations of speed, torque and power we current. Applications of dc shunt series and compound Principles of starting, losses and efficiency – load tes numerical problems.	ith motor 1 motors. t- simple	5 15%
	ΓΙΟΩΤΙΝΤΕΟΝΙΑΙ ΕΥΛΑΜΙΝΙΑΤΙΟ	A T	
III	FIRST INTERNAL EXAMINATION Transformers – principles of operations – emf equation- vecto		7 15%

	-		
	diagrams- losses and efficiency – OC and SC tests. Equivalent circuits- efficiency calculations- maximum efficiency – all day efficiency –		
	simple numerical problems. Auto transformers constant voltage		
	transformer- instrument transformers.		
	Three phase induction motors- slip ring and squirrel cage types-		15%
IV	principles of operation – rotating magnetic field- torque slip	-	
ĨV	characteristics- no load and blocked rotor tests. Circle diagrams-	7	
	methods of starting – direct online – auto transformer starting		
	SECOND INTERNAL EXAMINATION		
	Single phase motors- principle of operation of single phase induction		20%
	motor - split phase motor - capacitor start motor- stepper motor-		
V	universal motor Synchronous machines types - emf equation of	8	
v	alternator - regulation of alternator by emf method. Principles of	0	
	operation of synchronous motors- methods of starting- V curves-		
	synchronous condenser		
	Stepper motors: Principle of operation, multistack variable reluctance		20%
	motors, single-stack variable reluctance motors, Hybrid stepper motors,		
	Linear stepper motor, comparison, Torque-speed characteristics,		
	control of stepper motors		
VI	Controllers for automation, servo control, Digital controllers,	8	
	Advanced control systems, Digital signal processors, motor controllers,		
	Axis controllers, Machine tool controllers, Programmable Logic		
	Controllers		
			<u> </u>
	END SEMESTED EVAN		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

Course cod	e Course Name	L-T-P - Credit		Year of roduction
HS300	Principles of Management	3-0-0-3		2016
Prerequisite				
Course Obj	ectives			
0	evelop ability to critically analyse and evaluate	e a variety of mana	agement pr	actices in
	ontemporary context;	·	0 1	
	nderstand and apply a variety of management			
	e able to mirror existing practices or to generat		ative mana	gement
1	betencies, required for today's complex and glo	1 '		
	e able to critically reflect on ethical theories ar	nd social responsib	ility ideolo	ogies to
	e sustainable organisations.			
Syllabus				
	oles and functions of a manager, manageme			
	challenges and the concepts like, compet			
	Early contributors and their contributions to			
-	oonsibility. Planning, Organizing, Staffing			-
-	Decision making under certainty, uncert	ainty and risk,	creative p	rocess and
	nvolved in decision making.			
Expected of		0		
A student v i.	who has undergone this course would be able t manage people and organisations	0		
ii.	critically analyse and evaluate management	theories and prac	tices	
iii.	plan and make decisions for organisations	theories and pract	lices	
iv.	do staffing and related HRD functions			
Text Book				
	ontz and Heinz Weihrich, Essentials of Manag	ement. McGraw F	Iill Compa	nies 10th
Edition.			ini compu	
References				
	. Daft, New era Management, 11th Edition, G	Cengage Learning		
	. Griffin, Management Principles and Applic	0000		e Learning
	. Heinz Weirich, Mark V Cannice and Harole			
	Innovative and Entrepreneurial Perspective	e, McGraw Hill Ed	lucation, 1-	4th Edition
4	. Peter F Drucker, The Practice of Management	ent, McGraw Hill,	New York	K
5			on Educati	on
	Course Plan	1		
Module	Contents		Hours	Sem. Exam
				Marks
I I	ntroduction to Management: definitions, man	agerial roles and		
	unctions; Science or Art perspectives- Extern	-		
	lobal, innovative and entrepreneurial			
0	Janagement (3 Hrs.)– Managing people and		6	
	ne context of New Era- Managing for compet		-	
	ne Challenges of Management (3 Hrs.)	0		15%

	Early Contributions and Ethics in Management: Scientific		
	Management- contributions of Taylor, Gilbreths, Human		
II	Relations approach-contributions of Mayo, McGregor's		
11	Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the		
	Contingency Approach, the Mckinsey 7-S Framework		
	Corporate Social responsibility- Managerial Ethics. (3 Hrs)	6	150/
	FIRST INTERNAL EXAMINATION	0	15%
III	Planning: Nature and importance of planning, -types of plans (3 Hrs.)- Steps in planning, Levels of planning - The Planning	6	15%
	Process. – MBO (3 Hrs.).	0	10 /0
	Organising for decision making: Nature of organizing,		
	organization levels and span of control in management		
	Organisational design and structure -departmentation, line and		
IV	staff concepts (3 Hrs.) Limitations of decision making-		
	Evaluation and selecting from alternatives- programmed and	6	15%
	non programmed decisions - decision under certainty,		
	uncertainty and risk-creative process and innovation (3 Hrs.)		
	SECOND INTERNAL EXAMINATION		
	Staffing and related HRD Functions: definition,		
	Empowerment, staff – delegation, decentralization and		
	recentralisation of authority - Effective Organizing and		
\mathbf{V}	culture-responsive organizations –Global and entrepreneurial	0	2004
	organizing (3 Hrs.) Manager inventory chart-matching person	9	20%
	with the job-system approach to selection (3 Hrs.) Job design-		
	skills and personal characteristics needed in managers-		
	selection process, techniques and instruments (3 Hrs.)		
	Leading and Controlling: Leading Vs Managing – Trait		
	approach and Contingency approaches to leadership -		
	Dimensions of Leadership (3 Hrs.) - Leadership Behavior and		
VI	styles – Transactional and Transformational Leadership (3	9	200/
	Hrs.) Basic control process- control as a feedback system –	9	20%
	Feed Forward Control – Requirements for effective control –		
	control techniques – Overall controls and preventive controls –		
	Global controlling (3 Hrs.)		
	END SEMESTER EXAM		

Max. marks: 100, Time: 3 hours . The question paper shall consist of three parts

Part A: 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part B: 4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part C: 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

KTUQBANK.COM

Course code	Course Name	L-T-P-Credits	Year of Introduction
EE335	ELECTRICAL AND ELECTRONICS LAB	0-0-3-1	2016
Course Obje	ctives: The main objectives of this course are		
•	To give a practical knowledge on the working of electrical	machines includi	ng dc machines,
	induction motors and synchronous motors.		
•	To impart the basics about design and implementation of su	mall electronic ci	rcuits.
Syllabus			
List of experi	iments:		
	n a dc shunt generator, determination of critical resistance,	critical speed,	
	nal resistance required in the field circuit		
	haracteristics of DC Shunt generator haracteristics of DC Compound generator		
	test on DC Series motor		
	test on DC Shunt motor		
	test on single phase transformer		
	ng of three phase squirrel cage induction motor by star delta	switch, load test	
on three	ee phase squirrel cage induction motor		
	est on three phase slip ring induction motor		
	est on single phase induction motor.		
	d SC test on single phase transformer naracteristics of diodes and Zener diodes		
	and output characteristics of CE configuration of BJT S. De	termination of B	
	esistance and output resistance.	communication of p,	
-	vave and full wave rectifiers with and without filters- Obser	ve the waveforms	5
on CR	Э.		
Expected ou	tcome:		
-	will be able to		
i.	Test and validate various types of electrical motors		
ii.	Acquire knowledge on working of semiconductor devices.		

code	Course Name	L-T-P - Credits	Year of Introduction
ME331	MANUFACTURING TECHNOLOGY LABORATORY – I	0-0-3-1	2016
Prerequisit	e: ME220 Manufacturing Technology		
during r 2. To prac 3. To gain	bjectives: tice on machine tools and identify, manipulate and contro- nachining processes in manufacturing industry. etice arc and gas welding technologies. I knowledge on the structure, properties, treatment, testing on and Brass.	-	-
List of Exe	rcises/Experiments :		
 side cu tool gr Study Study turning Machi 	Inclature and attributes of each tool angles on cutting proc atting edge angle, end cutting edge angle and feed on su inding. The different methods used to observe how the work-piece the optimum aspect ratio of work-piece to avoid vil g. Ine tool alignment of test on the lathe. arpening of turning tool to specific geometry	rface rough e is precisely	ness obtainable -
knurling a	Ses on centre lathe :- Facing, plain turning, step turning nd chamfering - form turning and taper turning – eccent ead and internal thread etc.		
	tes on lathe: - Measurement of cutting forces in turning jughness obtainable by varying feed, speed and feed.	process and	correlation of the
surface ro 3 . Measu			
surface ro 3. Measu test on lat	ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning	and machin	e tool alignmen t
surface ro 3. Measu test on lat 4. Exercis 5. Exerci	ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning he machine.	and machin	e tool alignmen er sinking etc.
 surface ro 3. Measu test on lat 4. Exercise 5. Exercise correlate vertice 6. Exercise 	 ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning he machine. es on Drilling machine- drilling, boring, reaming, tapping ses on drilling machine: - Measurement of cutting for with varying input parameters. es on Shaping machine 	and machin ng and count prces in dril	e tool alignmen er sinking etc.
surface ro 3. Measu test on lat 4. Exercise 5. Exercise correlate vertices Exercise	 ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning he machine. es on Drilling machine- drilling, boring, reaming, tapping ses on drilling machine: - Measurement of cutting for with varying input parameters. es on Shaping machine es on shaping machine: - flat surfaces, grooves and key was and segment of the surfaces. 	and machin ng and count prces in dril	e tool alignmen er sinking etc.
surface ro 3. Measu test on lat 4. Exercise 5. Exercise correlate v 6. Exercise Exercise 7. Exercise	 ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning he machine. es on Drilling machine- drilling, boring, reaming, tapping ses on drilling machine: - Measurement of cutting for with varying input parameters. es on Shaping machine 	and machin ng and count prces in dril ways.	e tool alignmen er sinking etc.

correlate the surface roughness obtainable by varying input parameters. **10** Machine tool **alignment test** on milling machine

Planing and Broaching machine

11. Study and demonstration of broaching machine.

12. Exercises on planing machine

Exercises on Welding

13. Exercises on arc and gas welding: - butt welding and lap welding of M.S. sheets.

Exercises on Grinding machine

14. Exercise on surface grinding, cylindrical grinding and tool grinding etc.

15. Measurement of cutting forces and roughness in grinding process and correlate with varying input parameters.

Metallurgy

16. Specimen preparation, etching & microscopic study of Steel, Cast iron and Brass and Grain size measurement.

17. Heat treatment study:-Effect on mechanical properties and microstructure of Steel, Cast Iron and Brass.

18. Studies of various quenching mediums, **Carryout heat treatments on steel** based on ASM handbook vol.4 and observe the hardness obtained.

A minimum of 12 experiments are mandatory out of total 18 experiments but all the experiments mentioned in metallurgy are mandatory.

Besides to the skill development in performing the work, oral examination should be conducted during end semester examination.

The student's assessment, continuous evaluation, awarding of sessional marks, oral examination etc. should be carried out by the assistant professor or above.

Expected outcomes:

The students will be able to

- 1. Identify various process parameters and their influence on surface properties of various metals.
- 2. Recommend appropriate speed, feed and depth of cut for various processes on lathe machine.
- 3. Position, hold and locate work material and cutting tools in various basic machine tools.
- 4. Choose suitable welding process for different metals.
- 5. Choose appropriate heat treatment process for different metals

Text Books:

- 1. Acharkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication, 2000.
- 2. HMT, Production Technology, Tata McGraw Hill, 2001
- 3. W. A. J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers, 1956

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME361	Advanced Fluid Mechanics	3-0-0-3	2016
Prerequisite : N	IE203 Mechanics of fluids		

Course Objectives: The main objectives of this course are to

- To provide knowledge regarding fluid-flow phenomena observed in mechanical engineering systems, such as potential flow, vortex flow, boundary-layer flows, etc.
- To undertake sustained learning in fluid mechanics to advance their knowledge in this field.
- To enhance the understanding of fluid mechanics, including the equations of motion in differential form and turbulence.

Syllabus

Basic Concepts and Fundamentals, Stream function and Potential function, Lagrangian and Eulerian approaches, Potential flow, Incompressible viscous flow, Boundary layer theory, Turbulent Flow.

Expected Outcome:

The students will be able to

- i. Recognize the particular flow regime present in typical engineering system.
- ii. Demonstrate the concept of stream function, potential function and boundary layer.
- iii. Calculate the vorticity of a given velocity field and analyze the vorticity in idealized vortices: forced vortex and free vortex.
- iv. Choose the appropriate fluid mechanics principles needed to analyze the fluid-flow situations.
- v. Recognize how fluid flow theory can be employed in a modern mechanical engineering design environment.

Text books

- 1. Bansal R. K., A Text Book of Fluid Mechanics and Machines, Laxmi Publications, 2010.
- 2. Douglas J. F., Fluid Mechanics, Pearson Education, 2005.
- 3. Kumar D. S., Fluid Mechanics and Fluid Power Engineering, S. K. Kataria & Sons, 1987.
- 4. Muralidhar K., G. Biswas, Advanced Engineering Fluid Mechanics, Alpha Science International limited, 2005.
- 5. Rama D. D., Fluid Mechanics and Machines, New Age International, 2009.

Reference books

- 1. Schlichting H., K. Gersten, Boundary Layer Theory, 8/e, Springer 2000.
- 2. Shames I. H., Mechanics of Fluids, 4/e, McGraw-Hill, 2002.
- 3. Streeter V. L. and E. B. Wylie, Fluid Mechanics, McGraw-Hill, 1979.

	Course Plan		
Module	Contents	Hours	End Sem. Exam. Marks

I	Basic Concepts and Fundamentals: Fluid statics, Cartesian Tensors, Fluid Kinematics, and Description of fluid motion – Types of motion of fluid elements, Vorticity and circulation – Concept of rotational and irrotational flows. Equation of motion of forced and free vortex flow. Stream function and Potential function. Stream function and its relation with velocity field. Relation between stream function and stream lines - Relation between stream function and velocity potential for a 2-D irrotational and incompressible flow.	7	15%
п	Relation between stream lines and lines of constant potential. Sketching of stream lines. Lagrangian and Eulerian approaches, acceleration, temporal acceleration, convective acceleration. Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem. Problems on the application of momentum equation	6	15%
	FIRST INTERNAL EXAMINATION		
ш	Potential flow: Uniform flow, source flow, sink flow, free vortex flow and super imposed flow-source and sink pair, doublet, plane source in a uniform flow(flow past a half body), source and sink pair in a uniform flow(flow past a Rankine oval body), doublet in a uniform flow(flow past a circular cylinder). Pressure distribution on the surface of the cylinder. Flow past a cylinder with circulation, Kutta- Juokowsky's law. Complex flow potential, complex flow potentials for source, sink, vortex and doublet. Potential flow between two parallel plates, potential flow in a sector. Introduction to conformal transformation, conformal mapping.	7	15%
IV	Incompressible viscous flow. Concepts of laminar and turbulent flows . Stokes viscosity law. Navier Stoke's equation and significance (Derivation not necessary).Simplification of Havier stock equation for steady incompressible flows with negligible body forces. Parallel flow through straight channel and couette flow. Hagen - Poiseuille flow. Derivation of Hagen Poissuille equations for velocity and discharge through a pipe, derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients, flow in a rotating annulus, Viscometer based on rotating annulus.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Boundary layer theory, Boundary layer thickness, Displacement thickness, momentum thickness, Energy thickness and their calculation. Laminar Boundary Layers, Boundary layer equations; Boundary layer on a flat plate, Prandtl boundary layer equations, Blasius solution for flow over a flat plate, Von- Karman momentum integral	8	20%

	equations, Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow, favorable and adverse pressure gradients, Entry flow into a duct, flow separation and vortex shedding.		
V1	Turbulent Flow: Introduction to turbulent flow, Governing equations of turbulent flow, Turbulent boundary layer equation, Flat plate turbulent boundary layer, Fully developed Turbulent pipe flow for moderate Reynold's number, Prandtl mixing hypothesis, Turbulence modeling. Boundary layer control.	7	20%
	END SEMESTER EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

KTUQBANK.COM

Cours code	se Course Name	L-T-P Credit		ear of ntroduction	
ME	363 COMPOSITE MATERIALS AND MECHANICS	5 3-0-0-3		2016	
Prerequ	nisite : Nil				
	e Objectives:				
	Γο understand various matrices and reinforcements used in com Γο know about polymer matrix composites, metal matrix comp		matr	iv	
	composites and its manufacturing and applications		, man	17	
	Fo introduce post processing operations and micromechanics of	composites			
Syllab	us				
Compos	ites - Reinforcements - Matrices - Polymer matrix compos				
	e matrix composite – Post processing operations – Micromech	nanics of comp	osites		
Expect	ted outcome: The students will be able to gain knowledge about composites,	reinforcement	s mat	rices nost	
Text B	· · · · · · · · · · · · · · · · · · ·	Termoreement	5, 111ai	nees, post	
	K. K. Chawla, Composite Materials : Science and Engineering,	Springer 30 7	013		
	Reddy J N (Ed.), Mechanics of Composite Materials; Selected V	1 0		Pagano	
	Springer, 1994		ius 5.	i uguno,	
	Robert M. Jones, Mechanics of Composite Materials, CRC Press,	1998			
Refere	nces Books:				
	F.L.Matthews & R.D.Rawlings, Composite Materials, Engineer nall, London, 1994	ring and Sciend	es, C	hapman &	
2. I	Hand Book of Composites, George Lubin. Van Nostrand, Reinh	old Co. 1982			
3. I	Micael hyer, Stress Analysis of Fiber - Reinforced Composite N	laterials, Tata	McG	raw Hill,	
	1998.		~~		
	P.K.Mallicak, Fiber-reinforced composites , Monal Deklar Inc., Ronald Gibson, Principles of Composite Material Mechanics , T		88.		
5. 1		1994.			
	Course Plan				
Modu le	Contents	Н	ours	End Sem. Exam. Marks	
	Composite : Introduction, definition, characteristics, functions	6	1		
	classification of composites based on structure and matrix		1		
Ι	smart composites, advantages and limitations		1	15%	
	history, industrial scene and applications	1			

	types of bonding at interface.	1	
	Fibers : Introduction, types of fibers, natural fibers	1	
	glass fiber fabrication, structure, properties and applications	2	
	boron fiber fabrication, structure, properties and applications	1	
Π	carbon fiber, Ex-Pan carbon fiber	1	15%
11	Ex cellulose carbon fiber, Ex-Pitch carbon	1	1570
	carbon fiber structure, properties and applications	1	
	aramid fiber fabrication, structure, properties and applications	1	
	whiskers: characteristics, properties and applications.	1	
	FIRST INTERNAL EXAMINATION		
	Polymer matrix composites (PMC) : thermoset, thermoplastic and elastomeric polymers	1	
	properties, characteristics and applications as matrix materials	1	
III	processing of polymer matrix composites: hand methods, Lay up method, spray up method	2	15%
	moulding methods, pressure bagging and bag moulding methods,	1	
	pultrusion and filament winding process.	1	
	Metal matrix composites (MMC) : classification of metals, intermetallics, alloys and their potential role as matrices in composites	1	
	properties, characteristics and applications of metals as matrix materials	1	
IV	production techniques: powder metallurgy, diffusion bonding, melt stirring	2	15%
	squeeze casting, liquid infiltration under pressure, spray code position, insitu process.	2	
	SECOND INTERNAL EXAMINATION		
	Ceramic matrix composites (CMC) : classification of ceramics and their potential role as matrices,	1	
V	properties, characteristics and applications of ceramics as matrix materials	1	
	conventional techniques : cold pressing and sintering, hot pressing, reaction bonding,	1	20%
	hot pressing and reaction bonding new techniques : liquid infiltration, pultrusion,	1	
	lanxide process, insitu chemical technique, sol-gel technique	2	

	Post processing operations : machining, cutting, polishing,	1	
	welding, rivetting and painting	1	
	Advanced post processing methods : ultrasonic welding, plasma coating,	1	
V1	Water jet cutting and laser machining	1	20%
	Micromechanics of composites: maximum stress and strain criterion (derivations)	2	
	Tsai-Hill and Tsai-Wu failure criterion (derivations)	2	
	mechanics of load transfer from matrix to fiber (description)	1	
	END SEMESTER EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME365	Advanced Metal Casting	3-0-0-3	2016
Prerequisite : Nil			

Course Objectives

- To gain theoretical and practical knowledge in material casting processes
- To develops an understanding of the dependent and independent variables which control materials casting in a production processes.
- To impart knowledge on design of gating system for castings
- To know foundry practice of ferrous and non ferrous alloys

Syllabus

Functional requirements of molding materials, gating - type of gating- gating design- factor involved in gating design, risers – primary function of a riser-theoretical consideration-riser design and placement, solidification, heat transfer during solidification, heat flow in solidification, ferrous and non-ferrous foundry practice, steel casting, aluminum and its alloys, magnesium and its alloys, casting design, defects and testing.

Expected outcome:

• The students will have exposed to the different areas of foundry practices, gained idea about metal casting, scope and its applications.

Text Books/References

- 1. A.K.Chakrabarti, Casting Technology and Cast Alloys, Prentice -Hall Of India Ltd, 2005
- 2. Beely, Foundry Technology, Newnes-Butterworths, 1979
- 3. Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992
- 4. Heine, Loper and Rosenthal, Principle of Metal Casting, 2nd Edition, Tata Mc-Graw-Hill Publishing Company Limited, New Delhi, 1978
- 5. John Cambell, Casting, Butterworth-Heineman Ltd, Jordon Hill, Oxford, 1991
- 6. T.V.Rama Rao, Metal casting Principles and Practice, New Age International, 2010
- **7.** Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992.

	Course Plan					
Module	Contents	Hours	End Sem. Exam. Marks			
I	Design of molds Functional requirements of molding materials, type of sands Properties of molding sand, sand testing techniques Effect of molding on sand properties,	2	15%			

	Bonding material	1	
	Mould surface coating	1	
	Sand design and control	1	
	Thermal aspect of molding sand, mould wall movement	1	
	Pouring and feeding Gating - type of gating- gating design	1	
	Factor involved in gating design-illustrative problems in determination of filling time and discharge rate	1	
	Aspiration effect- effects of friction and velocity distribution	1	
II	Risers – primary function of a riser Theoretical consideration Riser design and placement	2	15%
	Determination of dimensions of rise- blind risers Internal risers-use of chills Use of insulators and exothermic compounds	1	-
	FIRST INTERNAL EXAMINATION		
	Solidification		
	Freezing of pure metal Skin effects- nucleation and growth	1	
	Shrinkage- freezing of alloys	1	-
	Effect of mould materials and alloy composition on casting	1	-
III	Fluidity- factor affecting fluidity- fluidity measurement and application of fluidity	1	15%
	Gases in metals- degassing	1	
	Grain refinement	1	
	Illustrative problems related to determination of solidification time	1	
	Heat transfer during solidification		
	Methods of manipulating heat transfer		
	Experimental methods for the study of heat transfer during solidification	1	
	Crystal growth methods	1	
IV	Heat flow in solidification	1	15%
	Heat transfer with in the solid/liquid metal system	1	_
	Heat transfer at the metal-mould interface	1	_
	Heat flow in one dimensional solidification geometries	1	-
	Freezing at mould wall	1	-
	Rapid freezing in contact with a cold substrate with initial melt super cooling	1	
	SECOND INTERNAL EXAMINATION		1
T 7	Ferrous and non ferrous castings Steel Casting – The family of cast iron	1	300/
V	Melting of steels and cast irons–Grey iron Foundry practice – ductile iron – Malleable Iron casting	1	20%

	design		
	Aluminum and its alloys: Different Aluminum alloy systems Advantage and limitation of Aluminum alloy castings	1	
	Molding for aluminum castings - melting of Aluminum- degassing- grain refinement	1	
	Modification- effect of various melt treatment on the mechanical properties of Aluminum castings.	1	
	Magnesium and its alloys: different alloy systems- advantage and limitation of Magnesium alloy castings Molding for magnesium casting- melting of Magnesium- flux and flux less melting	1	
	Type and functions of fluxes used- degassing and grain refinement- pouring technique	1	
	Copper alloys: advantage of Copper alloys- melting- drossing-oxygen and hydrogen in Copper melting- control of gases- de oxidation	1	
	Casting defects and testing		
	Functional design- metallurgical design	1	
	simplification of foundry practice- economic considerations	1	
T 74	design of junction- specification of castings	1	2 00/
V1	inspection of castings- analysis of casting defects	1	20%
	nondestructive testing of casting- dye penetrant testing	1	
	magnetic flaw detection, radiography, ultrasonic testing, etc.	1	
	quality control and quality assurance	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part B** There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part C** There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Credits :- APJ KTU | Fair Use Policy

Course code	Course Name	T-P- edits		r of uction
ME367	Non-Destructive Testing 3-0)-0-3	20	16
	Prerequisite : Nil			
• • • • • • • • • • • • • •	bjectives To introduce the basic principles, techniques, equipment, app NDT methods such as Visual, Penetrant Testing, Magnetic Testing, Radiography, Eddy Current. To enable selection of appropriate NDT methods. To identify advantages and limitations of nondestructive testi To make aware the developments and future trends in NDT. on to NDT- Visual Inspection- Liquid Penetrant Insp - Ultrasonic Testing- Radiography Testing- Eddy Current Test outcome e students will be able to differentiate various defect types and thods for the specimen. Idev Raj, Practical Non – Destructive Testing, Narosa Publish books	Particle ng met ection- sting. select t	e Testing, T hods Magnetic he appropri	Ultrasonic c Particle
2.	Hull B. and V.John, Non-Destructive Testing, Macmillan,198 Krautkramer, Josef and Hebert Krautkramer, Ultrasonic Test Verlag, 1990 Course Plan		Materials,	Springer-
	Course Fian			End
Module	Contents		Hours	Sem. Exam Marks
	Introduction to NDT, Comparison between destructive and			
I	Importance of NDT, Scope of NDT, difficulties of NDT, progress in NDT, economics aspects of NDT.	, future	1	15%
I	Visual Inspection - tools, applications and limitat		1	13 /0
	Fundamentals of visual testing: vision, lighting, material attention environmental factors.	ributes,	1	
	visual perception, direct and indirect methods mirrors, mag	nifiers.	1	
	boroscopes, fibroscopes, closed circuit television, light sour		1	
	special lighting, a systems, computer enhanced system	1.0	1	
	Liquid Penetrant Inspection : principles, properties require good penetrants and developers - Types of penetran			
II	developers and advantages and limitations of various methods of LP technique/ test procedure		1	15%
	interpretation and evaluation of penetrant test indication	s, talse		

	and safety precaution required in LPI, applications, advantages and limitations	1		
	FIRST INTERNAL EXAMINATION	-		
	Magnetic Particle Inspection (MPI)- Principles of MPI, basic			
	physics of magnetism, permeability, flux density, cohesive force, magnetizing force, rentivity, residual magnetism	1		
	Methods of magnetization, magnetization techniques such as head	1		
III	shot technique, cold shot technique, central conductor testing, magnetization using products using yokes	1	15%	
	direct and indirect method of magnetization, continuous testing of	1		
	MPI, residual technique of MPI, system sensitivity, checking devices in MPI	1		
	Interpretation of MPI, indications, advantage and limitation of MPI.	1		
	Ultrasonic Testing (UT): principle, types of waves, frequency,	1		
IV	velocity, wavelength, reflection, divergence, attenuation, mode conversion in ultrasonic UT testing methods	1	15%	
1 V	contact testing and immersion testing, normal beam and straight	1	13 /0	
	beam testing, angle beam testing, dual crystal probe, ultrasonic testing techniques			
	resonance testing, through transmission technique, pulse echo	1		
	testing technique, instruments used UT, accessories such as transducers, types, frequencies, and sizes commonly used	1		
	Reference blocks with artificially created defects, calibration of equipment, Applications, advantages, limitations, A, B and C scan - Time of Flight Diffraction (TOFD).	1		
	SECOND INTERNAL EXAMINATION			
	Radiography Testing (RT): Principle, electromagnetic radiation	1		
	sources: X-ray source, production of X-rays, high energy X-ray source, gamma ray source - Properties of X-rays and gamma rays	1	20%	
	Inspection techniques like SWSI, DWSI, DWDI, panoramic	1	2070	
V	exposure, real time radiography, films used in industrial radiography, types of film, speed of films, qualities of film	1		
	screens used in radiography, quality of a good radiograph, film	1		
	processing, interpretation, evaluation of test results, safety aspects required in radiography	1		
	applications, advantages and limitations of RT	1		
	Eddy Current Testing (ECT) - Principle, physics aspects of ECT	1		
V1	like conductivity, permeability, resistivity, inductance, inductive reactance, impedance	1		
	Field factor and lift of effect, edge effect, end effect, impedance	1	20%	
	plane diagram in brief, depth of penetration of ECT, relation between frequency and depth of penetration in ECT	1		
	equipments and accessories, various application of ECT such as	1		

conductivity measurement, hardness measurement, defect detection	1	
coating thickness measurement, advantages and limitations of eddy current testing	1	
END SEMESTER UNIVERSITY EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A**

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part B**

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part C

There should be 3 questions each from module V and VI $% \left({{{\rm{V}}_{\rm{N}}}} \right)$

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

(Course code	Course Name	L-T-P- Credits	Year of Introduction
	ME369	Tribology	3-0-0-3	2016
		Prerequisite : Nil		
Cour	se Objectives			
	 significance To understand the and the effect of v To learn about co wear problems To learn about the hydrodynamic an lubrications in me To understand the knowledge about 	nsequences of wear, wear mechanism e principles of lubrication, lubrication d the advanced lubrication technique etal working. e importance of adhesion property in different bearing materials. e nature of engineering surfaces, their	rs of sliding and n ms, wear theories on regimes, theori es and the applica different applica	colling friction s and analysis of tes of ation of ations and to get
Sylla	bus			
Like neas Surfa Recor E xpe	Friction, Wear and Lu urement of friction an ces, surface modific	Tribology in Design, Tribology in I brication, different types of lubrica d wear -The Topography of Engine ation techniques- Adhesion prop of Bearings, Comparison of Sliding a	tion techniques eering Surface, (perties, Adhesic	and applications. Contact Between on in Magnetic
			significance	
i. ii. iii.	Understanding the th	ect 'tribology' and its technological a neories/laws of sliding and rolling fri nsequences of wear, wear mechanism	iction and the eff	•
iv.	Get an exposure to the	heories of hydrodynamic and the adv of lubrications in metal working.	vanced lubricatio	n techniques
v.	Gain overview of ad different bearing ma	hesion property in different applicat terials	ions and to get k	nowledge about
vi.	Get basic idea about surface characterizat	the nature of engineering surfaces, t ion techniques.	their topography	and learn about
ſext	books			
1. 2.		Friction and Wear of Materials, John pology: Friction and Wear of Engine	•	

3. Prasanta Sahoo, Engineering Tribology, PHI Learning Private Ltd, New Delhi, 2011.

Reference books

- 1. B. Bhushan, Introduction to Tribology, John Wiley & Sons, Inc, New York, 2002
- 2. B.Bhushan, B.K. Gupta, Handbook of tribology: materials, coatings and surface treatments", McGraw-Hill,1997
- 3. Halling J ,"Principles of Tribology", McMillan Press Ltd., 1978

	Course Plan		
Module	Contents	Hours	End Sem. Exam. Marks
	Introduction to Tribology- Tribology in Design, Tribology in Industry, Economic Aspects of Tribology	1	
	Tribological Parameters Like Friction, Wear and Lubrication	1	
I	The Topography of Engineering Surface, Contact Between Surfaces.	2	15%
	Types of Bearings, Comparison of Sliding and Rolling Contact Bearings.	2	
	Introduction, Empirical Laws of Friction, Kinds of Friction	1	
	Causes of Friction, Theories of Friction	1	
	Measurement of Friction	1	
II	Friction of Metals, Ceramic Materials, Polymers.	2	15%
	Rolling Friction- Laws of Rolling Friction, Relation Between Temperature and Friction	1	
	Stick-Slip, Prevention of Stick-Slip, Consequences of Friction. FIRST INTERNAL EXAMINATION	1	
	Types of Wear, Various Factors Affecting Wear	1	
	Theories of Wear, Wear Mechanisms	2	
	Measurement of Wear.	1	
III	Wear Regime Maps, Alternative Form of Wear Equations	1	15%
	Lubricated and Unlubricated Wear of Metals, Materials Used in Different Wear Situations.	2	15%
	Fundamentals of Viscosity And Viscous Flow	1	
IV	Principle and Application of; Hydrodynamic Lubrication, Elastrodynamic Lubrication, Boundary and Solid Lubrication	2	15%
ΤV	Types of Lubricants, Properties of Lubricants	1	
	Effect of Speed and Load on Lubrication, Frictional Polymers.	1	
	Lubrication in Metal Working: Rolling, Forging, Drawing and Extrusion.	2	
	SECOND INTERNAL EXAMINATION		
V	Adhesion: Introduction, Adhesion Effect by Surface Tension, Purely Normal Contact and Compression Plus Shear	2	20%

Time: 3 hrs

	Adhesion in Magnetic Recording Systems	1	
	Dependence of Adhesion on Material and Geometric Properties.	1	
	Bearing Materials : Introduction, Rolling Bearing, Fluid Film Lubricated Bearing, Dry Bearing, Bearing Constructions.	3	
	Introduction To Surface Engineering, Concept and Scope of Surface Engineering.	1	
	Surface Modification – Transformation Hardening, Surface Melting, Thermo chemical Processes	3	
V1	Surface Coating – Plating and Anoding Processes, Fusion Processes, Vapor Phase Processes.	3	20%
	Selection of Coating For Wear And Corrosion Resistance, Potential Properties and Parameters of Coating.	1	
	END SEMESTER EXAMINATION		1

Question Paper Pattern

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

3

code	Course Name L-T-P- Credits		ear of duction
ME371	Nuclear Engineering 3-0-0-3		016
1112571	Prerequisite : Nil		010
Course (Dbjectives:		
•	To explore the engineering design of nuclear power plants using the of reactor physics, thermodynamics, fluid flow and heat transfer. To provide an overview on reactor principles, nuclear safety, and rebehaviour. To understand the standards of radiation protection and need for medisposal	eactor dyn	amic
Syllabus			
	of Elementary nuclear physics, Nuclear fission, Boiling water Nuclear fuels, Reactor heat removal, Safety and disposal	reactor, S	structural
Expected	Outcome:		
The stude	nts will be able to		
2. ui	derstand the theories and principles of nuclear power generation derstand the heat removal techniques applied to reactor heat transfe quire knowledge about safe disposal of nuclear wastes	er systems.	
Text bool	xs/ Reference books		
IN	Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van I C. 1967. Glasstone, Source book on atomic energy, Krieger Pub Co., 1979	Nostrand C	ompany,
	Course Plan		
Module	Course Plan Contents	Hours	End Sem. Exam. Marks
Module I		r 1 y 7	Sem. Exam.
	Contents Review of Elementary nuclear physics: Atomic structure – nuclear energy and nuclear forces – Nuclear fission. Nuclear reactions and radiations – Principles of radioactive decay interactions of an ray with matter – Neutron cross sections and reactions –The fission	r 1 2 7 7 7 - - 7	Sem. Exam. Marks

Time: 3 hrs

III	components –Control and safety features .Materials of reactor construction – Fuel, moderator, coolant	7	15%
IV	Structural materials – Cladding –Radiation damage, Nuclear fuels : Metallurgy of Uranium – General principles of solvent extraction – Reprocessing of irradiated fuel – Separation process fuel enrichment .	7	15%
	SECOND INTERNAL EXAMINATION		
V	Reactor heat removal / equations of heat transfer as applied to reactor cooling– Reactor heat transfer systems – Heat removed in fast reactors. Radiation safety : Reactor shielding – Radiation dozes – Standards of radiation protection	7	20%
V1	Safety and disposal: Nuclear plant safety-safety systems-changes and consequences of accident-criteria for safety-nuclear waste- types of waste and its disposal-radiation hazards and their prevention-weapons proliferation	7	20%
	END SEMESTER EXAMINATION		

Boiling water reactor . Description of reactor system - Main

Question Paper Pattern

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Ktu 👤 bank

Credits :- APJ KTU | Fair Use Policy

KTUQBANK.COM

Course	Course Name	L-T-P -	Year of
code.		Credits	Introduction
ME373	Human Relations Management	3-0-0-3	2016
	Prerequisite: Nil		

Course Objectives

- To impart basic idea about human behavior as an individual and relations in group levels.
- To give idea on management of human relations in organizations and collective bargaining.
- To create knowledge on management of employer-employee relations and human conflicts.

Syllabus

Human behaviour as individual, Human behaviour in group, Management of human relations in organisations, Management of human relations and collective bargaining, Managing employeremployee relations, Managing human conflicts, Managing global human relations. Employee safety and health.

Expected outcome

The students will

- i. get basic idea about human behavior in individual and group levels.
- ii. understand the human relations in organizations and collective bargaining.
- iii. be able to manage employer-employee relations and conflicts.

Text Books:

- 1. Gary Dessler, Human Resource Management., Pearson Education, 2017
- 2. Seema Sanghi , Stephen P. Robbins, , Timoti A Judge : Organizational Behaviour, Pearson Education, 2009

References:

- 1. Aubrey. C. Sanford, Human Relations: Theory and Practice, Merrill, 1973
- 2. C S Venkata Ratnam and B K Srivastava, Personnel Management and Human Resources, TMH, 1996.
- **3.** William Scott, R C Clothier and W Spiegel : Personnel Management Principles: Practices and Points of Views, Tata Mc Graw Hill, 1977.
- 4. Uma Sekharan, Organizational Behaviour-Text and Cases ,Tata Mc Graw Hill, 1989.
- 5. V. Kumar, Customer Relationship Management, Wiley India Edition, 2013.

	Course Plan		
Module		Hours	End Sem. Exam Marks
I	Human Behaviour : Biological characteristics, age, gender, tenure. Ability, intellectual and physical abilities. Learning, theories of learning. Values, importance of values, types. Attitudes, types, attitudes and consistency, workforce diversity. Personality and emotions, personality determinants and traits, emotion dimensions. Perception, factors influencing perception, making judgement about others, link between perception and individual decision making.	6	15%
П	Human Behaviour and Relations in Groups : Defining and classifying different groups. Stages of group development, Five stage model. Group structure, roles, norms, status and size. Group decision making, group versus the individual. Types of teams, self-managed work teams, problem solving teams. Creating effective teams, composition, work design, process and team players.	6	15%
	FIRST INTERNAL EXAMINATION		

nagement of Human Laws and Collective Bargaining : ployment law, gross misconduct, personal supervisory liability, offs and the plant closing law. Collective bargaining, good faith, ptiating team, bargaining items, bargaining stages, bargaining hints, asses, mediation, and strikes, the contract agreement. Grievances, sources of vances, the grievance procedure, guidelines for handling grievances.	7	15%
SECOND INTERNAL EXAMINATION		
nagement of Training and Employer-Employee Relations : ining and development, objectives, strategies, methods and iniques. Design and organisation of training and evaluation of hing. Employee relations, management-employee relations, managing ripline, grievance and stress, counselling, are handling problem ployees. Industrial relations implications of personnel policies, nature mployment relationship.	8	20%
nagement of Human Conflicts, Customer Relations, Unions and bal Relations: Industrial and organisational conflict, managing for d industrial relations and managing the moment of conflict. Customer	8	20%
0	bal Relations: Industrial and organisational conflict, managing for d industrial relations and managing the moment of conflict. Customer ionship management, what if customer is the problem. Place of ons in organizations. The future scenario, the changing personnel agement scenario. Managing global human relations. HRD the	bal Relations: Industrial and organisational conflict, managing for d industrial relations and managing the moment of conflict. Customer ionship management, what if customer is the problem. Place of ns in organizations. The future scenario, the changing personnel

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3x10 marks = 30 marks) **Part B**

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3x10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4x10 marks = 40 marks) **Note:** Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs.

Course code	Course Name L-1	-P - Credits	Year of Introduction
**341	DESIGN PROJECT	0-1-2-2	2016
	Prerequisite : Nil		
Course Objective	es		
To underst	and the engineering aspects of design with refere	nce to simple	products
• To foster i	nnovation in design of products, processes or sys	tems	
 To develop 	o design that add value to products and solve tech	nical problem	S
Course Plan	PLARDUL KA	AM	
study, analyse and manufacture/cons handling, sustaina	mum three simple products, processes or techniq l present them. The analysis shall be focused on t truction, quality, reliability, aesthetics, ergo ability, cost etc. whichever are applicable. Eac ly; choosing different products, processes or tech	functionality, s nomics, safet h student in	strength, material, ty, maintenance,
with detailed desig	ect team shall identify an innovative product, progn. At the end, the team has to document it prope ected to concentrate on functionality, design for s	rly and presen	t and defend it.
	ur/week allotted for tutorial shall be used for dis exceeding four) can be students from different br	-	
Expected outcom	ne.	4	
The students will			
	nink innovatively on the development of components,	products, proce	esses or
	chnologies in the engineering field nalyse the problem requirements and arrive workable	design solution	C
п. А	haryse the problem requirements and arrive workable	design solution	15
Reference:		-	•
NCICICICC.	Luchs, Scott Swan, Abbie Griffin, 2015. Design	Chinking 405	nages John
Michael 1	Sons, Inc		puges, joint
Michael 1			<i>puges, John</i>
Michael Wiley &		20 mark	
Michael Wiley & Evaluation First evaluation	Sons, Inc	20 mark	s
Michael Wiley & Wiley & Second evaluation	Sons, Inc Estension (Immediately after first internal examination)	20 mark	cs cs

