Course code	Course Name	L-T-P Credits	Year of Introduction
CS401	COMPUTER GRAPHICS	4-0-0-4	2016
Course Obje • To • Syllabus: Basic Concep Algorithms. Windowing, Hidden Line detection – F		display devices. Is. I projections. ing. Display devices. Line Iling. Two dimension ons. Projections – P ng – digital image re	and circle drawing nal transformations varallel, Perspective presentation – edge
 i. compa ii. analyz iii. apply iv. analyz v. apply vi. summ 	will be able to : are various graphics devices are and implement algorithms for line draw geometrical transformation on 2D and 3D are and implement algorithms for clipping various projection techniques on 3D object arize visible surface detection methods ret various concepts and basic operations of	objects cts	d polygon filling
 E. PT 3. W Gr 4. Zh 	onald Hearn and M. Pauline Baker, Comp Gose, R. Johnsonbaugh and S. Jost., Patte R, 1996 (Module VI – Image Processing J illiam M. Newman and Robert F. Sproull aphics. McGraw Hill, 2e, 1979 igang Xiang and Roy Plastock, Computer cGraw Hill, 1986.	ern Recognition and In part) , Principles of Interact	nage Analysis, PHI ive Computer
20 2. M Th	avid F. Rogers , Procedural Elements for C 01. Sonka, V. Hlavac, and R. Boyle, Image F omson India Edition, 2007. fael C. Gonzalez and Richard E. Woods,	Processing, Analysis, a	and Machine Vision,

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Basic concepts in Computer Graphics – Types of Graphic Devices – Interactive Graphic inputs – Raster Scan and Random Scan Displays.	7	15%
II	Line Drawing Algorithm- DDA, Bresenham's algorithm – Circle Generation Algorithms –Mid point circle algorithm, Bresenham's algorithm- Scan Conversion-frame buffers – solid area scan conversion – polygon filling algorithms	8	15%
	FIRST INTERNAL EXAM		
ш	Two dimensional transformations. Homogeneous coordinate systems – matrix formulation and concatenation of transformations. Windowing concepts –Window to Viewport Transformation- Two dimensional clipping-Line clipping – Cohen Sutherland, Midpoint Subdivision algorithm	8	15%
IV	Polygon clipping-Sutherland Hodgeman algorithm, Weiler- Atherton algorithm, Three dimensional object representation- Polygon surfaces, Quadric surfaces – Basic 3D transformations	8	15%
	SECOND INTERNAL EXAM		
V	Projections – Parallel and perspective projections – vanishing points. Visible surface detection methods– Back face removal- Z-Buffer algorithm, A-buffer algorithm, Depth-sorting method, Scan line algorithm.	9	20%
VI	Image processing – Introduction - Fundamental steps in image processing – digital image representations – relationship between pixels – gray level histogram –spatial convolution and correlation – edge detection – Robert, Prewitt, Sobel.	8	20%
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. *Any TWO* questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.

2014

cod CS4(e Course Name	L-T-P Credits	Year of Introduction
		3-0-0-3	2016
Course	e Objectives:	5005	2010
• •	To introduce the concepts of data Mining and its application	ng	
•			
•	To understand investigation ofe data using practical data m	ming tools.	
•	To introduce Association Rules Mining	AA	
•	To introduce advanced Data Mining techniques	AM	
Syllab		C AL	
	Aining, Applications, Data Mining Models, Data Warehou		-
	Data Mining Principles, Data Preprocessing: Data Pr	-	-
	zation, Data Sets and Their Significance, Classification Mo		-
	Ining, Classifiers, Association Rules Mining, Cluster And	-	
	Advanced Data Mining Techniques, Web Mining, Text M	ining, CRM A	Applications an
	lining, Data warehousing.		
-	ted Outcome:		
The Stu	udent will be able to :		
i.	identify the key process of Data mining and Warehousing		
ii.	apply appropriate techniques to convert raw data into suit	able format f	or practical dat
	mining tasks		
iii.	analyze and compare various classification algorithms and a	apply in appro	priate domain
iv.	evaluate the performance of various classification methods	using perform	
			ance metrics
v.	make use of the concept of association rule mining in real w	orld scenario	ance metrics
v. vi.	select appropriate clustering and algorithms for various appl		ance metrics
			ance metrics
vi.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data		ance metrics
vi. vii. Text B	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data	lications	
vi. vii. Text B	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks:	lications	
vi. vii. Text B 1.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003.	lications 'opics'', Pearso	on Education,
vi. vii. Text B 1.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T	lications 'opics'', Pearso	on Education,
vi. vii. Text B 1. 2.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Concep 2006.	lications 'opics'', Pearso	on Education,
vi. vii. Text B 1. 2. Refere	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Concep 2006.	lications 'opics'', Pearso ots and Techni	on Education, iques", Elsevie
vi. vii. Text B 1. 2. Refere	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Concep 2006. mces: M Sudeep Elayidom, "Data Mining and Warehousing",	lications 'opics'', Pearso ots and Techni	on Education, iques", Elsevie
vi. vii. Text B 1. 2. Refere 1.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Concep 2006. nces: M Sudeep Elayidom, "Data Mining and Warehousing", Learning India Pvt. Ltd.	lications opics", Pearso ots and Techni , 1 st Edition,	on Education, iques", Elsevie 2015, Cengag
vi. vii. Text B 1. 2. Refere 1.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Conception 2006. mces: M Sudeep Elayidom, "Data Mining and Warehousing", Learning India Pvt. Ltd. Mehmed Kantardzic, "Data Mining Concepts, Methods and	lications opics", Pearso ots and Techni , 1 st Edition,	on Education, iques", Elsevie 2015, Cengag
vi. vii. Text B 1. 2. Refere 1. 2.	select appropriate clustering and algorithms for various applextend data mining methods to the new domains of data ooks: Dunham M H, "Data Mining: Introductory and Advanced T New Delhi, 2003. Jaiwei Han and Micheline Kamber, "Data Mining Concep 2006. nces: M Sudeep Elayidom, "Data Mining and Warehousing", Learning India Pvt. Ltd.	lications opics", Pearso ots and Techni , 1 st Edition, d Algorithms"	on Education, iques", Elsevie 2015, Cengag , John Wiley

	Course Plan		
Module	Contents	Hours	End Sem Exam . Marks
T	Data Mining:- Concepts and Applications, Data Mining Stages, Data Mining Models, Data Warehousing (DWH) and On-Line		1501
Ι	Analytical Processing (OLAP), Need for Data Warehousing, Challenges, Application of Data Mining Principles, OLTP Vs DWH, Applications of DWH	6	15%
II	Data Preprocessing: Data Preprocessing Concepts, Data Cleaning, Data integration and transformation, Data Reduction, Discretization and concept hierarchy.	6	15%
	FIRST INTERNAL EXAM		
III	Classification Models: Introduction to Classification and Prediction, Issues regarding classification and prediction, Decision Tree- ID3, C4.5, Naive Bayes Classifier.	6	15%
IV	Rule based classification- 1R. Neural Networks-Back propagation. Support Vector Machines, Lazy Learners-K Nearest Neighbor Classifier. Accuracy and error Measures- evaluation. Prediction:-Linear Regression and Non-Linear Regression.	6	15%
	SECOND INTERNAL EXAM		
V	Association Rules Mining: Concepts, Apriori and FP-Growth Algorithm. Cluster Analysis: Introduction, Concepts, Types of data in cluster analysis, Categorization of clustering methods. Partitioning method: K-Means and K-Medoid Clustering.	8	20
VI	Hierarchical Clustering method: BIRCH. Density-Based Clustering –DBSCAN and OPTICS. Advanced Data Mining Techniques: Introduction, Web Mining- Web Content Mining, Web Structure Mining, Web Usage Mining. Text Mining. Graph mining:- Apriori based approach for mining frequent subgraphs. Social Network Analysis:- characteristics of social networks. Link mining:- Tasks and challenges.	8	20

Question Paper Pattern

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All the TEN* questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. *Any TWO* questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

2014

code	Course Name	L-T-P Credits	Year of Introduction
CS403	PROGRAMMING PARADIGMS	3-0-0-3	2016
• To in	ectives: troduce the basic constructs that underlie all troduce the basics of programming language troduce the organizational framework for lear	design and impleme	entation
Polymorphise determinacy; Subroutines a Passing, Exc and Object features of	es, and Bindings - Binding Time, Scope Ru m; Control Flow - Expression Evaluation, S Data Types - Type Systems, Type Checki and Control Abstraction - Static and Dynam eption Handling, Co-routines; Functional an Orientation -Encapsulation, Inheritance, E Scripting Languages; Concurrency - Threa ; Run-time program Management.	tructured and Unstr ing, Equality Testi ic Links, Calling S nd Logic Language Dynamic Method	nuctured Flow, Non- ng and Assignment; equences, Parameter es; Data Abstraction Binding; Innovative
i. co ii. an iii. aj iv. an	will be able to : ompare scope and binding of names in different nalyze control flow structures in different pro ppraise data types in different programming l nalyze different control abstraction mechanis	ogramming languag anguages	
vi. ai vii. co	ppraise constructs in functional, logic and sc nalyze object oriented constructs in different ompare different concurrency constructs	programming langu	lages
vi. ai vii. co viii. ir Text book:	M L, Programming Language Pragmatics, 3r	programming langu	

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Names, Scopes and Bindings:- Names and Scopes, Binding Time, Scope Rules, Storage Management, Binding of Referencing Environments. Control Flow: - Expression Evaluation, Structured and Unstructured Flow, Sequencing, Selection, Iteration, Recursion, Non-determinacy.	7	15 %
II	Data Types:-Type Systems, Type Checking, Records and Variants, Arrays, Strings, Sets, Pointers and Recursive Types, Lists, Files and Input/Output, Equality Testing and Assignment.	7	15 %
	FIRST INT <mark>E</mark> RNAL EXAM		
III	Subroutines and Control Abstraction: - Static and Dynamic Links, Calling Sequences, Parameter Passing, Generic Subroutines and Modules, Exception Handling, Co-routines.	7	15 %
IV	Functional and Logic Languages:- Lambda Calculus, Overview of Scheme, Strictness and Lazy Evaluation, Streams and Monads, Higher-Order Functions, Logic Programming in Prolog, Limitations of Logic Programming.	7	15 %
	SECOND INTERNAL EXAM		
V	Data Abstraction and Object Orientation:-Encapsulation, Inheritance, Constructors and Destructors, Aliasing, Overloading, Polymorphism, Dynamic Method Binding, Multiple Inheritance. Innovative features of Scripting Languages:-Scoping rules, String and Pattern Manipulation, Data Types, Object Orientation.	7	20 %
VI	Concurrency:- Threads, Synchronization. Run-time program Management:- Virtual Machines, Late Binding of Machine Code, Reflection, Symbolic Debugging, Performance Analysis.	7	20 %
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.

2014

Course code	Course Name	L-T-P -Credits	Year Introdu		
CS404	Embedded Systems	3-0-0-3	201		
	Course Objectives:				
	introduce the technologies behind emb	edded computing system	c		
	introduce and discuss various softwar	1 0 1		ed system	
	ign and development.	e components involved in	I embedua	su system	
	expose students to the recent trends in	embedded system design			
Syllabus:	expose students to the recent tiends in	embedded system design	•		
•	n to embedded systems, basic co	omponents, its characte	eristics.	Modelling	
	systems, firmware development. Inte	1		0	
	nt environment. Characteristics of R				
	OS. Embedded product development li		U		
Expected		•			
The Stude	nt will be able to :				
i. de	monstrate the role of individual con	mponents involved in a	typical e	embedded	
-	stem				
	alyze the characteristics of different		nd select	the most	
-	propriate one for an embedded system				
	odel the operation of a given embedded	•	. 1		
	bstantiate the role of different soft	ware modules in the c	levelopme	ent of an	
	nbedded system velop simple tasks to run on an RTOS				
	amine the latest trends prevalent in em				
	-	ibedded system design			
Reference	s: taunstrup and Wayne Wolf, Hardw	ara / Softwara Co Dosi	an. Dring	inlog and	
	ctice, Prentice Hall.	ale / Soltwale CO-Desi	gii. Fiine	ipies and	
	n J. Labrose, Micro C/OS II: The Real	Time Kernel. 2e. CRC P	ress. 2002		
	Kamal, Embedded Systems: Arch		,		
-	tion, McGraw Hill Education (India), 2				
	bu K.V., Introduction to Embedded		Educatio	n (India),	
200	9.				
5. Ste	ave Heath, Embedded System Design,	Second Edition, Elsevier			
	yne Wolf, Computers as Components		l Compute	er System	
De	sign, Morgan Kaufmann publishers, Th				
,	Course l	Plan	1		
				End	
Module	Contents		Hours	Sem.	
mouure			nours	Exam	
		· · · · · · · · · · · · · · · · · · ·		Marks	
	Fundamentals of Embedded Systems				
т I	microprocessors- Embedded sys .Specifications- architecture design	tem design process		1501	
Ι	design of hardware and software cor	•	6	15%	
	behavioural description.	nponento- structurar allu			
	-				
	Hardware Software Co-Design and				
II	Fundamental Issues, Computational		9	15%	
	Graph, Control Data Flow Graph, Sta Model, Concurrent Model, Object orig	_			
	would, concurrent would, object offe				

	FIRST INTERNAL EXAMINATION		
III	Design and Development of Embedded Product – Firmware Design and Development – Design Approaches, Firmware Development Languages.	6	15%
IV	Integration and Testing of Embedded Hardware and Firmware- Integration of Hardware and Firmware. Embedded System Development Environment – IDEs, Cross Compilers, Disassemblers, Decompilers, Simulators, Emulators and Debuggers.	6	15%
	SECOND INTERNAL EXAMINATION		
V	RTOS based Design – Basic operating system services. Interrupt handling in RTOS environment. Design Principles. Task scheduling models. How to Choose an RTOS. Case Study – MicroC/OS-II.	9	20%
VI	Networks – Distributed Embedded Architectures, Networks for embedded systems, Network based design, Internet enabled systems. Embedded Product Development Life Cycle – Description – Objectives -Phases – Approaches1. Recent Trends in Embedded Computing.	6	20%
	END SEMESTER EXAM		

Question Paper Pattern

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P -Credits	Year of Introduction
CS405	COMPUTER SYSTEM ARCHITECTURE	3-0-0-3	2016

Course Objectives:

- To impart a basic understanding of the parallel architecture and its operations
- To introduce the key features of high performance computers

Syllabus:

Basic concepts of parallel computer models, SIMD computers, Multiprocessors and multi-computers, Cache Coherence Protocols, Multicomputers, Pipelining computers

and Multithreading.

Expected outcome :

The Students will be able to :

- i. summarize different parallel computer models
- ii. analyze the advanced processor technologies
- iii. interpret memory hierarchy
- iv. compare different multiprocessor system interconnecting mechanisms
- v. interpret the mechanisms for enforcing cache coherence
- vi. analyze different message passing mechanisms
- vii. analyze different pipe lining techniques
- viii. appraise concepts of multithreaded and data flow architectures

Text Book:

• K. Hwang and Naresh Jotwani, Advanced Computer Architecture, Parallelism, Scalability, Programmability, TMH, 2010.

References:

- 1. H P Hayes, Computer Architecture and Organization, McGraw Hill, 1978.
- 2. K. Hwang & Briggs , Computer Architecture and Parallel Processing, McGraw Hill International, 1986
- 3. M J Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, Introduction to Parallel Processing, PHI, 2014.
- 5. P M Kogge, The Architecture of Pipelined Computer, McGraw Hill, 1981.
- 6. PVS Rao, Computer System Architecture, PHI, 2009.
- 7. Patterson D. A. and Hennessy J. L., Morgan Kaufmann , Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann Pub, 4/e, 2010.

ModuleContentsHoursSem Example Market Example Market Example Market Example Architecture, System Attributes to performance, Andahl's law for a fixed workload. Multiprocessors and Multiconputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.Parallel computers performance, Andahl's parallelism.Parallel computers fixed workload. Multiprocessors and Multiconputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.Parallelism. <th></th> <th>Course Plan</th> <th></th> <th></th>		Course Plan		
IArchitecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.15%IIProcessors and memory hierarchy - Advanced processor technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.815%IIIMultiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks.715%IIICache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%VInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%VIInstruction pipeline design, Arithmetic pipeline design - Super Scalar Pipeline Design820%VIMultithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	Module	Contents	Hours	End Sem. Exam Marks
IItechnology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.815% FIRST INTERNAL EXAM IIIMultiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Pipelining and Superscalar techniques - Linear Pipeline 	I	Architecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of	6	15%
Multiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks.Image: Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%VInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%VIMultithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading 	II	technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory	8	15%
IIIsystems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline 		FIRST INTERNAL EXAM		
IVFlow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%SECOND INTERNAL EXAMVInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%VIMultithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	III	systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem		15%
VInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	IV	Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques – Linear Pipeline	8	15%
VSuper Scalar Pipeline Design820%Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%				
VItechniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	V		8	20%
hybrid architecture	VI	techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and	8	20%

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks: 24
 - b. *THREE* questions, each having **12 marks**. One question is from **module** V; one question is from **module** VI; one question *uniformly* covers **modules** V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P - Credits	Year Introdu				
CS407	DISTRIBUTED COMPUTING	3-0-0-3	201	.6			
 To and To des Syllabus: Introducti System m 	 Course Objectives: To introduce fundamental principles of distributed systems, technical challenges and key design issues. To impart knowledge of the distributed computing models, algorithms and the design of distributed system. Syllabus: Introduction to distributed computing, Design issues, Distributed Computing Models System models, Inter-process communication, Distributed file system, Name Service 						
Expected The Stud i. dist ii. ider iii. illu iv. app con v. con env vi. con vi. out sys Text Book 1. Geo Con 2. Pra	ents will be able to : tinguish distributed computing paradigm fro ntify the core concepts of distributed system strate the mechanisms of inter process comm by appropriate distributed system principles isistency and fault-tolerance in distributed fi npare the concurrency control mechanisms i vironment line the need for mutual exclusion and electi tems	om other computs nunication in dis s in ensuring tran le system n distributed tran ion algorithms in ndberg , Distribu	tributed s nsparency nsactional distribut	ystem , ed ms:			
	s: Tanenbaum and M V Steen , Distributed Sy rson Education, 2007	stems: Principles	and para	digms,			
2. M	Solomon and J Krammer, Distributed Syste	ems and Comput	er Netwo	rks, PHI			
	Course Plan		1	Tre 1			
Module	Contents		Hours	End Sem. Exam Marks			
I	Evolution of Distributed Computing -Issue a distributed system- Challenges- Minicom Workstation model - Workstation-Se Processor - pool model - Trends in distri	nputer model – erver model–	7	15%			
II	System models: Physical models - Architec Fundamental models	tural models -	6	15%			

	FIRST INTERNAL EXAM			
III	Interprocess communication: characteristics – group communication - Multicast Communication –Remote Procedure call - Network virtualization. Case study : Skype	7	15%	
IV	Distributed file system: File service architecture - Network file system- Andrew file system- Name Service	7	15%	
	SECOND INTERNAL EXAM			
V	Transactional concurrency control:- Transactions, Nested transactions-Locks-Optimistic concurrency control	7	20%	
VI	Distributed mutual exclusion – central server algorithm – ring based algorithm- Maekawa's voting algorithm – Election: Ring -based election algorithm – Bully algorithm	7	20%	
	END SEMESTER EXAM			

Question Paper Pattern

1. There will be *FOUR* parts in the question paper – A, B, C, D

2. Part A

- a. Total marks : 40
- b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 - All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module III**; one question is from **module IV**; one question *uniformly* covers **modules III** & **IV**.

ESTO.

- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* **50**% analytical/numerical questions in all possible combinations of question choices.

code	Course Name	L-T-P Credits	Year Introdu	
CS409	CRYPTOGRAPHY AND NETWORK SECURITY	3-0-0-3	2010	6
Course Ob	jectives:			
• To i	ntroduce fundamental concepts of symmetric an	d asymmetric ciph	er models.	
	ntroduce fundamental concepts of authentication			
• To i	ntroduce network security and web security prof	tocols.	A	
Syllabus:	ALL ADDUL	MIL MI	01	
Symmetric				
	Primitive operations- Key expansions- Inve			
	hy Systems - Authentication functions- N			
	Digital signatures- Authentication protocols-			
Expected C	ket Layer and Transport layer Security- Secure e	lectronic transactio	on – Firewall	lS
	its will be able to :			
	mmarize different classical encryption techniques	3		
	ntify mathematical concepts for different crypto		S	
	nonstrate cryptographic algorithms for encryptio			
	nmarize different authentication and digital signa			
v. ider	ntify security issues in network, transport	and application	layers and	outline
000	ropriate security protocols			
app	nopriate security protocols			
Text Books	s:			
Text Books	s: rouz A. Forouzan, Cryptography and Network S	-		
Text Books	s:	-		
Text Books 1. Beh 2. Will	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu	-		
Text Books 1. Beh 2. Will References	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu	urity, Pearson Educ	cation, 2014	
Text Books 1. Beh 2. Will References 1. B. S	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu :: Schneier, Applied Cryptography, Protocols, Alg	urity, Pearson Educ	cation, 2014	
Text Books 1. Beh 2. Will References 1. B. S Edn	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu	orithms, and Source	cation, 2014	
Text Books 1. Beh 2. Will References 1. B. S Edn	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu chneier, Applied Cryptography, Protocols, Algo , Wiley, 1995.	orithms, and Source	cation, 2014	
Text Books 1. Beh 2. Will References 1. B. S Edn	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu chneier, Applied Cryptography, Protocols, Algo Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1	orithms, and Source	cation, 2014	2, 2 nd
Text Books 1. Beh 2. Will References 1. B. S Edn	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu chneier, Applied Cryptography, Protocols, Algo Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1	orithms, and Source	cation, 2014	2, 2 nd
Text Books 1. Beh 2. Will References 1. B. S Edn	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu chneier, Applied Cryptography, Protocols, Algo Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1	orithms, and Source	cation, 2014	2, 2 nd End Sem.
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier, Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan	orithms, and Source	cation, 2014 ce Code in C PHI, 2002	E, 2 nd End Sem. Exam
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu chneier, Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan	orithms, and Source Network Security,	cation, 2014 ce Code in C PHI, 2002 Hours	E, 2 nd End Sem. Exam
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan Contents Symmetric Cipher Models- Substitution techn	orithms, and Source Network Security,	cation, 2014 ce Code in C PHI, 2002 Hours on	E, 2 nd End Sem. Exam
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu s: Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, D Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir	orithms, and Source Network Security, iques- Transpositi nplified DES- Blo	cation, 2014 ce Code in C PHI, 2002 Hours on ck	E, 2 nd End Sem. Exam Marks
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Alge , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, D Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir Cipher principles- The Data Encryption Standar	iques- Transpositi nplified DES- Blo	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- 7	E, 2 nd End Sem. Exam
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module I	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu s: Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, D Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir	iques- Transpositi nplified DES- Blo	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- 7	E, 2 nd End Sem. Exam Marks
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module I	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Alge , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, D Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir Cipher principles- The Data Encryption Standar Differential and linear Cryptanalysis. Blo principles- Block Cipher modes of operations. IDEA: Primitive operations- Key expansions	iques- Transpositi nplified DES- Blo rd, Strength of DE ck Cipher Desi	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- 7 gn dd	E, 2 nd End Sem. Exam Marks
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module I	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir Cipher principles- The Data Encryption Standar Differential and linear Cryptanalysis. Blo principles- Block Cipher modes of operations. IDEA: Primitive operations- Key expansions round, Even Round- Inverse keys for decryption technical and linear Cryptanalysis.	iques- Transpositi nplified DES- Blo rd, Strength of DE ck Cipher Desi s- One round, O yption. AES: Bas	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- gn dd sic 7	End Sem. Exam Marks 15 %
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module I I I	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir Cipher principles- The Data Encryption Standar Differential and linear Cryptanalysis. Blo principles- Block Cipher modes of operations. IDEA: Primitive operations- Key expansions round, Even Round- Inverse keys for decry Structure- Primitive operation- Inverse Cipher	iques- Transpositi nplified DES- Blo rd, Strength of DE ck Cipher Desi s- One round, O yption. AES: Bas er- Key Expansio	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- gn dd sic 7	E, 2 nd End Sem. Exam Marks
Text Books 1. Beh 2. Will References 1. B. S Edn 2. Cha Module I I	s: rouz A. Forouzan, Cryptography and Network S liam Stallings, Cryptography and Network Secu Schneier , Applied Cryptography, Protocols, Algo , Wiley, 1995. arlie Kaufman, Radia Perlman, Mike Speciner, 1 Course Plan Course Plan Symmetric Cipher Models- Substitution techn techniques- Rotor machines-Steganography. Sir Cipher principles- The Data Encryption Standar Differential and linear Cryptanalysis. Blo principles- Block Cipher modes of operations. IDEA: Primitive operations- Key expansions round, Even Round- Inverse keys for decryption technical and linear Cryptanalysis.	iques- Transpositi nplified DES- Blo rd, Strength of DE ck Cipher Desi s- One round, O yption. AES: Bas er- Key Expansio	cation, 2014 ce Code in C PHI, 2002 Hours on ck S- gn dd sic 7	End Sem. Exam Marks 15 %

III	Public key Cryptography: - Principles of Public key Cryptography Systems, Number theory- Fundamental Theorem of arithmetic, Fermat's Theorem, Euler's Theorem, Euler's Totient Function, Extended Euclid's Algorithm, Modular arithmetic. RSA algorithm- Key Management - Diffie-Hellman Key Exchange, Elliptic curve cryptography	7	15 %
IV	Authentication requirements- Authentication functions- Message authentication codes- Hash functions- SHA -1, MD5, Security of Hash functions and MACs- Authentication protocols-Digital signatures-Digital signature standards.	7	15 %
SECOND INTERNAL EXAM			
V	Network security: Electronic Mail Security: Pretty good privacy- S/MIME. IP Security: Architecture- authentication Header- Encapsulating Security payload- Combining Security associations- Key management.	7	20 %
VI	Web Security: Web Security considerations- secure Socket Layer and Transport layer Security- Secure electronic transaction. Firewalls-Packet filters- Application Level Gateway- Encrypted tunnels.	7	20 %

END SEM<mark>ES</mark>TER EXAM

- Question Paper Pattern (End semester exam)
- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course		L-T-P -	Year of
code	Course Name	Credits	Introduction
CS431	COMPILER DESIGN LAB	0-0-3-1	2016
Pre-requisi	te : CS331 System Software Lab		
Course Ob	jectives:		
• To :	implement the different Phases of compiler.		
• To :	implement and test simple optimization techniques		
• To g	give exposure to compiler writing tools.		
List of Exer	rcises/Experiments :	LAN	11
1. Des	sign and implement a lexical analyzer for given lan	guage using (and the lexical
ana	alyzer should ignore redundant spaces, tabs and new	v lines.	
2. Imj	plementation of Lexical Analyzer using Lex Tool	V	
3. Ger	nerate YACC specification for a few syntactic catego	ories.	
a)	Program to recognize a valid arithmetic expression	that uses oper	rator +, - , * and
	/.		
b)	Program to recognize a valid variable which starts	with a letter f	ollowed by any
	number of letters or digits.		
c)	Implementation of Calculator using LEX and YACC		
d)	Convert the BNF rules into YACC form and wr	ite code to g	ene <mark>r</mark> ate abstract
	syntax tree		
4. Wr	ite program to find ε – closure of all states of any giv	ven NFA with	ε transition.
5. Wr	ite program to convert NFA with ε transition to NFA	Α without εtr	ansition.
6. Wr	ite program to convert NFA to DF <mark>A</mark>		
7. Wr	ite program to minimize any given DFA.		
8. De	velop an operator prec <mark>e</mark> dence pars <mark>er</mark> for a given lang	guage.	
9. Wr	ite program to find Simulate First and Follow of any	y given gramn	nar.
10. Co	nstruct a recursive descent parser for an expression.		
11. Co	nstruct a Shift Reduce Parser for a given language.		
12. Wi	rite a program to perform loop unrolling.		
13. Wi	rite a program to perform constant propagation.		
14. Imj	plement I <mark>ntermediate co</mark> de generation fo <mark>r</mark> simple ex	pressions.	
15. Imj	plement th <mark>e back end o</mark> f the compiler which take	<mark>s the thr</mark> ee ad	ldress code and
pro	oduces the 80 <mark>86 assemb</mark> ly language instructions th	<mark>at can</mark> be asse	embled and run
usi	ng an 8086 ass <mark>embler. The</mark> target assembly i <mark>nstruct</mark> i	<mark>ons</mark> can be sir	nple move, add,
sub	p, jump etc.		
Expected O	Outcome:		
The Studen	t will be able to :		
i. Imp	plement the techniques of Lexical Analysis and Synt	ax Analysis.	
ii. App	bly the knowledge of Lex & Yacc tools to develop p	rograms.	
iii. Gen	erate intermediate code.		
iv. Imp	element Optimization techniques and generate mach	ine level code	

Course code	Course Name	L-T-P Credits	Year Introdu	
CS461	COMPUTATIONAL GEOMETRY	3-0-0-3	2010	6
 To To To To Syllabus: Geometric Searching, Convex Hu Expected of the Stude i. Devendent data ii. Apply sear visi iii. Periodat the stude <l< td=""><td>introduce techniques for designing efficient a discuss data structures used for geometric pro- introduce combinatorial complexity of geom- study rigorous algorithmic analysis of geome- preliminaries, Plane sweep technique, Li Triangulation, Art Gallery theorem, Line alls and Verona Diagrams. Dutcome: ents will be able to : velop efficient algorithms by exploiting geo- a structures and geometric techniques. by techniques and algorithms for solving p- rching, data mining, graphics and image p- on, motion planning and robotics. form complexity analysis of algorithms http properties of geometric objects, express r correctness blement geometric algorithms. s: mco P. Preparata and Michael Ian Shamos, sts and Monographs in Computer Science, Sp eph O'Rourke, <i>Computational Geometry in</i> rk. de Berg, Marc. van Kreveld, Mark. Ove <i>ometry- Algorithms and Applications</i>. Spring</td><td>oblems etric problems. etric problems. ne segment intersection ar programming, Arrang ometric properties, and u roblems in diversified file processing, pattern recog s them as lemmas or the <i>Computational Geometry</i> pringer Verlag. <i>C</i>. Cambridge University mars and Otfried Cheonger- Verlag 3rd Edn.</td><td>, Point l ements of using app lds like of nition, c orems, ar <i>an Intro</i> Press 2^{nc} g, <i>Compu</i></td><td>ocation, of lines, propriate database omputer ad prove duction. ¹ Edn. utational</td></l<>	introduce techniques for designing efficient a discuss data structures used for geometric pro- introduce combinatorial complexity of geom- study rigorous algorithmic analysis of geome- preliminaries, Plane sweep technique, Li Triangulation, Art Gallery theorem, Line alls and Verona Diagrams. Dutcome: ents will be able to : velop efficient algorithms by exploiting geo- a structures and geometric techniques. by techniques and algorithms for solving p- rching, data mining, graphics and image p- on, motion planning and robotics. form complexity analysis of algorithms http properties of geometric objects, express r correctness blement geometric algorithms. s: mco P. Preparata and Michael Ian Shamos, sts and Monographs in Computer Science, Sp eph O'Rourke, <i>Computational Geometry in</i> rk. de Berg, Marc. van Kreveld, Mark. Ove <i>ometry- Algorithms and Applications</i> . Spring	oblems etric problems. etric problems. ne segment intersection ar programming, Arrang ometric properties, and u roblems in diversified file processing, pattern recog s them as lemmas or the <i>Computational Geometry</i> pringer Verlag. <i>C</i> . Cambridge University mars and Otfried Cheonger- Verlag 3 rd Edn.	, Point l ements of using app lds like of nition, c orems, ar <i>an Intro</i> Press 2 ^{nc} g, <i>Compu</i>	ocation, of lines, propriate database omputer ad prove duction. ¹ Edn. utational
2. Jos	eph O' Rourke, Art Gallery Theorems. Oxfor			
	Course Plan			Fnd
Module	Contents		Hours	End Sem. Exam Marks
Ι	Geometric Preliminaries, DCEL (Doubly C structure, Polygon, Planar Straight Line G triangle, area of a polygon, Determinant of point with respect to a directed line. Conv and point location in convex polygon (inside Plane sweep algorithm, Algorithm for Li problem using plane sweep technique.	braph (PSLG) Area of a used to test position of a vex polygons, properties e-outside test)	6	15%

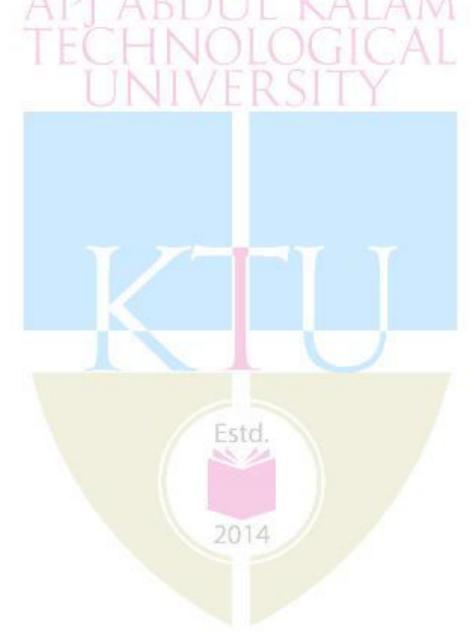
II	Point location in PSLG – Slab method, Chain method and complexity analysis. Range Searching – 1D Range search, Kd Trees.	6	15%
	FIRST INTERNAL EXAM		
III	 Polygon Triangulation: Regularization of polygons, properties of triangulations –Proofs, triangulation of monotone polygon – algorithm and complexity analysis. Linear Programming – Half plane intersection, Incremental algorithm and Randomized algorithm 	8	15%
IV	 Art Gallery Theorem, Guarding Art Gallery, Fisk's proof using three colouring. Arrangements of Lines – Duality, Combinatorics of arrangements, Zone Theorem, Algorithm for Constructing arrangements of lines. 	6	15%
	SECOND INTERNAL EXAM		
V	Convex Hulls- Convex Hull Algorithms in the Plane -Graham's Scan Algorithm, Jarvi's March, Divide and Conquer Algorithm.	6	20%
VI	Voronoi Diagrams- Properties and applications in the plane. Proofs of properties related to vertices and edges of voronoi diagrams Algorithm for constructing voronoi diagram. Delaunay Triangulation.	8	20%
	Triangulation. END SEMESTER EXAM	_	

END SEMESTER EXAM

Question Paper Pattern End semester exam)

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).

All the TEN questions have to be answered.


3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P - Credits		ar of luction
CS462	FUZZY SET THEORY AND APPLICATIONS	3-0-0-3	20)16
 To disc To disc To intr To disc To disc Syllabus: Theory of Sets, Zade Theory ar Relational Functional Expected The Studen i. inte ii. ide and 	oduce the theory of fuzzy sets. cuss theoretical differences between fuzzy sets and classic cuss fuzzy logic inference oduce fuzzy arithmetic concepts. cuss fuzzy inference applications in the area of control. Fuzzy Sets: Classical Sets vs Fuzzy Sets, Types of Fuz eh's Extension Principle, Fuzzy Relations, Fuzzy Rel and Fuzzy Measures. Applications of Fuzzy Sets: Ap Inference, Fuzzy Controllers, Efficiency and Effecti Approximation capabilities.	zzy Sets, Op lational Equa oproximate I veness of in ty theory and	ations, Po Reasoning Iference s	et theory
Pr 2. Tr 20 Refere -ce 1. E D 2. H 19 3. K	eorge J Klir and Bo Yuan, " <i>Fuzzy Sets and Fuzzy Logic :</i> rentice Hall NJ,1995. imothy J. Ross, "Fuzzy Logic with Engineering Applicati 010.	ons", 3rd Edi ms, Kluwer Allied Publi	ition, Will Academi shers, Ne	ley, c Press, w Delhi,
4. N A 5. M	A Grabisch et al., <i>Aggregation Functions</i> , Series - Encycle pplications, Cambridge University Press, 2009 lichal Baczynski and Balasubramaniam Jayaram, <i>Fuzzy</i> eidelberg, 2008.	-		
	Course Plan			End
Module	Contents		Hours	Sem. Exam Marks
Ι	Classical sets vs Fuzzy Sets - Need for fuzzy sets - Defi Mathematical representations - Level Sets - Fuzzy fu Zadeh's Extension Principle.	unctions -	06	15%
II	Operations on [0,1] - Fuzzy negation, triangular	norms, t-	06	15%

			1
	conorms, fuzzy implications, Aggregation Operations, Fuzzy		
	Functional Equations		
	FIRST INTERNAL EXAMINATION		
	Fuzzy Binary and n-ary relations - composition of fuzzy relations -		
III	Fuzzy Equivalence Relations - Fuzzy Compatibility Relations -	07	15%
	Fuzzy Relational Equations		
117	Fuzzy Measures - Evidence Theory - Necessity and Belief	07	1507
IV	Measures - Probability Measures vs Possibility Measures	07	15%
SECOND INTERNAL EXAMINATION			
	Fuzzy Decision Making - Fuzzy Relational Inference -		
V	Compositional Rule of Inference - Efficiency of Inference -	08	20%
	Hierarchical		
	Fuzzy If-Then Rule Base - Inference Engine - Takagi-Sugeno		
	Fuzzy Systems - Function Approximation Applications		
X7T	Advanced topics: Adaptive fuzzy inference systems: Adaptive	00	20%
VI	networks - Architectures - Learning rules.	08	
	Adaptive neuro-fuzzy inference systems (ANFIS) - Architectures -		
	Hybrid learning rules.		
	END SEMESTER EXAM		

END SEMESTER EXAM Question Paper Pattern

1. There will be FOUR parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T- P- Credit	Year of Introduction
CS463	DIGITAL IMAGE PROCESSING	3-0-0-3	2016
ProceTo di	ectives: htroduce and discuss the fundamental concepts and applica essing. scuss various basic operations in Digital Image Processing. how various transform domains	ations of	Digital Image
	on digital image processing fundamentals; Image Transforms bring; Image segmentation; Morphological Image procession		
 i. comp devic ii. appre featu iii. interp spatia iv. apply v. sumr vi. ident Text Books: 1. A K 2. Rafa 	s will be able to : pare different methods for image acquisition, storage and re- res and computers eciate role of image transforms in representing, highlighting, res pret the mathematical principles in digital image enhancement al domain and frequency domain y various methods for segmenting image and identifying image narise different reshaping operations on the image and their pra- ify image representation techniques that enable encoding and	and modent and a modent and a modent and a component actical approximation decoding and a contract and a contra	lifying image pply them in ents plications images a, 1989.
1. Al H 2. Mila Visio 3. S J	Bovik, The Essential Guide to Image Processing, Academic Pron n Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, on, Thomson Learning, 2008. ayaraman, S Esakkirajan and T Veerakumar, Digital Image F cation, 2009.	Analysis	s, and Machine
	COURSE PLAN		
Module	Contents	Hours	End Sem. Exam Marks
Ι	Introduction to Image processing: Fundamental steps in image processing; Components of image processing system; Pixels; coordinate conventions; Imaging Geometry; Spatial Domain; Frequency Domain; sampling and quantization; Basic relationship between pixels; Applications of Image Processing.	6	15%

п	Image transforms and its properties – Unitary transform; Discrete Fourier Transform; Discrete Cosine Transform; Walsh Transform; Hadamard Transform;	7	15%
	FIRST INTERNAL EXAM		
III	Image Enhancement in spatial domain Basic Gray Level Transformation functions – Image Negatives; Log Transformations; Power-Law Transformations. Piecewise-Linear Transformation Functions: Contrast Stretching; Gray Level Slicing; Bit Plane Slicing; Histogram Processing–Equalization; Specification. Basics of Spatial Filtering – Smoothing: Smoothing Linear Filters; Ordered Statistic Filters; Sharpening: Laplacian; Unsharp Masking and High Boost Filtering.		15%
IV	Image Enhancement in Frequency Domain Basics of Filtering in Frequency Domain, Filters - Smoothing Frequency Domain Filters : Ideal Low Pass Filter; Gaussian Low Pass Filter; Butterworth Low Pass Filter; Sharpening Frequency Domain Filters: Ideal High Pass Filter; Gaussian High Pass Filter; Butterworth High Pass Filter; Homomorphic Filtering.	6	15%
	SECOND INTERNAL EXAM		
V	Image Segmentation: Pixel-Based Approach- Multi-Level Thresholding, Local Thresholding, Threshold Detection Method; Region-Based Approach- Region Growing Based Segmentation, Region Splitting, Region Merging, Split and Merge, Edge Detection - Edge Operators; Line Detection, Corner Detection.	8	20%
VI	Morphological Operations Basics of Set Theory; Dilation and Erosion - Dilation, Erosion; Structuring Element; Opening and Closing; Hit or Miss Transformation. Representation and Description Representation - Boundary, Chain codes, Polygonal approximation approaches, Boundary segments.	7	20%
	END SEMESTER EXAM		

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV;
 FOUR questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Cou cod	Course Name	L-T-P - Credits	Year of Introduction
CS4	64 ARTIFICIAL INTELLIGENCE	3-0-0-3	2016
Course	e Objectives:		
٠	To introduce basic principles that drive complex re	al world intellige	ence applications.
٠	To introduce and discuss the basic concepts of AI	Techniques and I	Learning
Syllabu	us:		
	oduction to AI, Solving Problems by Searching	-	
	straint Satisfaction problems -AI Representati rches-Alpha beta pruning, Expert Systems-Natural		-
	ted Outcome:	Language 110ces	sing Concepts.
-	ident will be able to :		
i.	appreciate the scope and limits of the artificial int	elligence (AI) fie	bld
ii.	assess the applicability, strengths, and weak representation	-	
iii.	interpret the role of knowledge representation, pro	oblem solving ar	nd learning
iv.	explain various search algorithms (uninformed, in solving	-	•
v.	comprehend the fundamentals of Natural Languag	ge Processing	
Text B	ooks:		
1.	E Rich, K Knight, Artificial Intelligence, 3/e, Tata	McGraw Hil, 20	09.
2.	George.F.Luger, Artificial Intelligence- Structu	res and Strateg	gies for Complex
	Problem Solving, 4/e, Pearson Education. 2002.		
Refere	nces:		
1.	D. Poole and A. Mackworth. Artificial Intelligen	ce: Foundations	of Computational
	Agents, Cambridge University Press, 2010 Availab	ole online: http://	artint.info/
2.	Dan W Patterson, Introduction to Artificial Intellig	ence,Pearson,200)9
	Deepak Khemeni, A First course in Artificial Intelli	gence,Tata McG	raw Hill,2013
	Maja J. Mataric ,Robotics Primer,MIT press,2007		_
	Patrick Henry Winston, Artificial intelligence, Addi	-	
	Stefan Edelkamp, Stefan Schroedl, Heuristic S Morgan Kaufman, 2011.	Search: Theory	and Applications
	Stuart Jonathan Russell, Peter Norvig, Artificial in edition, pearson,2010	ntelligence, A mo	odern approach,3rd

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Introduction : What is AI, The foundations of AI, History and applications, Production systems. Structures and strategies for state space search. Informed and Uninformed searches.	5	15%
II	Search Methods: data driven and goal driven search. Depth first and breadth first search, DFS with iterative deepening. Heuristic search-best first search, A * algorithm.AO* algorithm, Constraint Satisfaction. Crypt Arithmetic Problems	8	15%
	FIRST INTERNAL EXAMINATION	1	1
Ш	AI representational schemes- Semantic nets, conceptual dependency, scripts, frames, introduction to agent based problem solving, Machine learning-symbol based-a frame work for symbol based learning.	6	15%
IV	Advanced Search: Heuristics in Games, Design of good heuristic-an example. Min-Max Search Procedure, Alpha Beta pruning,	6	15%
	SECOND INTERNAL EXAMINATION		
V	Learning Concepts: Version space search. Back propagation learning. Social and emergent models of learning-genetic algorithm, classifier systems and genetic programming.	9	20%
VI	Expert Systems: rule based expert systems. Natural language processing-natural language understanding problem, deconstructing language. Syntax stochastic tools for language analysis, natural language applications	9	20%
	END SEMESTER EXAM	· .	

2014

Question Paper Pattern (End semester exam)

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P Credits	Year of Introduction
CS465	BIOINFORMATICS	3-0-0-3	2016

Course Objectives:

- To introduce concepts and data representations in bioinformatics
- To introduce fundamentals of Sequence alignment and Gene Recognition
- To discuss predictive methods using DNA and Protein Sequences

Syllabus:

Introduction to bioinformatics and molecular biology: Databases tools and their uses, Data searches and Pairwise Alignments, Multiple Sequence Alignments, Molecular Phylogenetic, Genomics and Gene Recognition, Protein and RNA structure Prediction

Expected Outcome:

The Students will be able to :

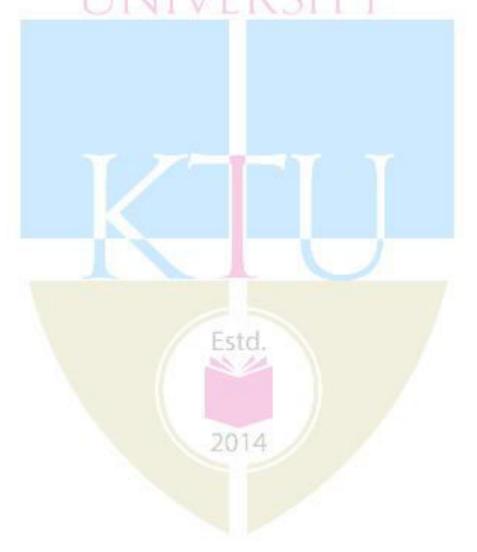
- i. interpret the concepts of bioinformatics
- ii. identify different types of biological sequence
- iii. analyse multiple sequences and find conserved regions
- iv. predict RNA and Protein secondary structures
- v. analyse genomic sequences and identify encoded gene regions

References:

- S C Rastogi, N Mendiratta and P Rastogi, "Bioinformatics: Methods and Applications", ISBN: 978-81-203-4785-4, published by PHI Learning Private Limited, New Delhi, 2015.
- 2. D E Krane and M L Raymer, Fundamental Concepts of Bioinformatics, ISBN 978-81-7758-757-9, Pearson Education, 2006.
- 3. Andreas D.Baxevanis, B F Francis Ouellette, "Bioinformatics A Practical Guide to the Analysis of Genes and Proteins", Third Edition, 2005-2006, ISBN: 978-81-265-2192-0, published by John Wiley & Sons INC., U.K.
- 4. Neil C Jones and Pavel A Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004.

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
Ι	Bioinformatics and Computational Biology, Nature & Scope of Bioinformatics. The central dogma of molecular biology and bio-sequences associated with it, RNA classification –coding and non coding RNA- mRNA, tRNA, miRNA and sRNA, RNAi. DNA and RNA structure – Nucleic Acid structure and function, Genetic Code, Genes and Evolution	6	15%
Π	Importance of databases - Biological databases-primary sequence databases, Composite sequence databases- Secondary databases- nucleic acid sequence databases - Protein sequence data bases - structure databases, Types of databases, Data retrieval tools - Entrez	8	15%

III	Sequence alignment – local/global, pairwise sequence alignment, scoring methods. Needleman and Wunsch algorithm, global and local alignments. Multiple sequence alignment. Scoring matrices: basic concept of a scoring matrix, Matrices for nucleic acid and proteins sequences, PAM and BLOSUM series, principles based on which these matrices are derived. Differences between distance & similarity matrix.	8	20%
IV	Introduction, Advantages, Phylogenetic Trees, Tree topologies, Methods for phylogenetic analysis- Distance Matrix methods, Character based methods. HMM (Hidden Markov Model): Introduction to HMM, Forward algorithm, Viterbi algorithm, applications in Bioinformatics SECOND INTERNAL EXAM	6	15%
V	General introduction to Gene expression in prokaryotes and eukaryotes- Prokaryotic Genomes – Gene structure, GC content, Gene Density, Eukaryotic Genomes- Gene structure, GC content, Gene Density, Gene Expression, Transposition, Gene prediction approaches.	8	20%
VI	Protein and RNA structure Prediction: Predicting RNA secondary structure - Nussinov Algorithm, Energy minimisation methods - Zuker Algorithm. Amino Acids, Polypeptide Composition, Protein Structures, Algorithm for protein folding, Structure prediction	6	15%

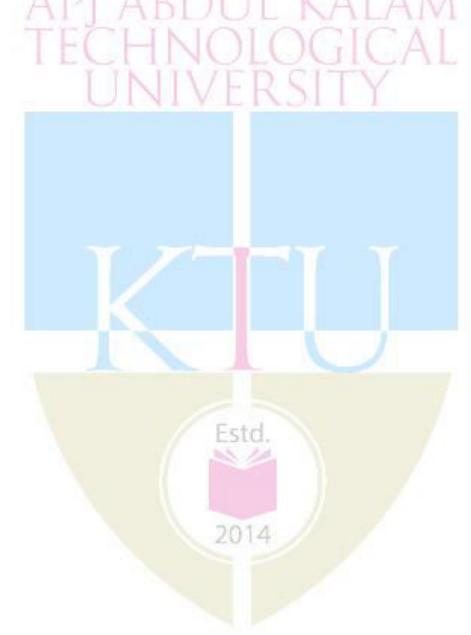

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18

- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.



Course c	ode Course Name	L-T-P Credits	-	ar of duction
CS466	DATA SCIENCE	3-0-0-3	2	016
• To in predice • To in predice • To in yredice• To in $yredice• To inyredice• To inyredice• To inyredice• To inexploresyrocessing• ExpectedThe Studei. erii. diiii. poiv. pov. po$	bjectives: roduce fundamental algorithmic ideas to process data. roduce and discuss techniques for applying hypothese etions. roduce documentation and visualization techniques. cientific, engineering, and business applications are raditional data analysis analysis technologies were no m world. Data Science has emerged as a new, exciti novel statistical, algorithmic, and implementati g, storing, and extracting knowledge from Big Data. Outcome: nt will be able to : replain and discuss the significance of data science and scuss and demonstrate various models suitable for data erform preliminary statistical analysis using R languag erform python-based predication and filtering on simple erform Hadoop and Map-Reduce for data analysis form data visualization techniques at a basic level es: oris Lublinsky, Kevin T. Smith. Alexcy Yakubovich, iley, 2015. re Leskovec, Anand Rajaraman, Jeffrey D. Ullman, mbridge University Press, 2014. than Yau, "Visualize This: The Flowing Data Gui atistics", Wiley, 2011. na Zumel, John Mount "Practical Data Science with R meer Madhavan , "Mastering Python for Data Scien 15. ny Ojeda, Sean Patrick Murphy, Benjarnin Bengfort. ience Cookbook", Packt Publishing Limited, 2014. N. Venablcs. D. M. Smith and the R Core Team, "Ar	increasingly of t designed for ng and fast-pa on challenges its key functi a science e on simple dat e data sets 'Professional H "Mining of I de to Design, Manning Pu ace", Packt Pu Abhijit Dasgup	lependen the com iced disc: that e ionalities ta sets Hadoop S Massive Visualiz iblicatior iblishing pta. "Prac	t on data, plexity of ipline that merge in Solutions", Datasets". cation and as. 2014. Limited, ctical Data
	Course Plan	1		
Module	Contents		Hours	End Sem. Exam Marks %
I	Data science process-roles, stages in data science prowith data from files-working with relational databa data –managing data-cleaning and sampling for r validation-introduction to NoSQL	ses-exploring	6	15

II	Choosing and evaluating models-mapping problems to machine learning, evaluating clustering models, validating models-cluster analysis-k-means algorithm, Naive Bayes-Memorization Methods - Linear and logistic regression-unsupervised methods.	8	20
	FIRST INTERNAL EXAM		
III	Reading and getting data into R- ordered and unordered factors - arrays and matrices lists and data frames - reading data from files - probability distributions - statistical models In R manipulating objects - data distribution.	8	15
IV	Python-based data visualization, predication through linear regression, collaborative filtering.	6	15
	SECOND INTERNAL EXAM		
V	Introduction distributed file system mar reduce. Algorithm using Map Reduce –Matrix –Vector Multiplication by map reduce – Hadoop – Understanding Map Reduce architecture – writing Hadoop Map-Reduce programs-Loading data into HDFS Map- Reduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.	6	20
VI	Documentation and deployment - producing effective presentations - introduction to graphical analysis – plot() function - display ing multivariate data - matrix plots multiple plots in one window - exporting graph - using graphics parameters. Case studies.	6	15

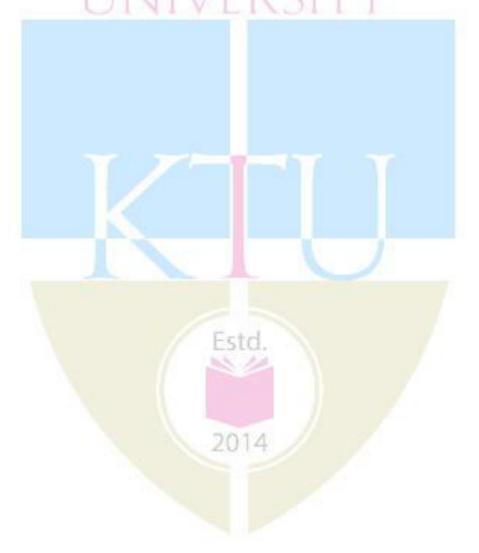
- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 - All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 40% analytical/numerical questions in all possible combinations of question choices.

Course o	code	Course Name	L-T-P Credits	Yea Introd	r of uction
CS46	9	COMPUTATIONAL COMPLEXITY	3-0-0-3	20	16
Course ()bject	ives:			
• T	'o intr	oduce the fundamentals of computational com	plexity theory.		
• T	o disc	cuss basic concepts such as computational	models, compu	tational c	omplexit
m	easure	es (e.g., time and space complexity measures),	, complexity clas	ses, reduc	ibility and
cc	omplet	teness notions.	ALAN		
• T	o fami	iliarize the concepts of randomized and appro	oximation algorit	hms and d	liscuss th
re	lated	complexity classes.	IL A		
Syllabus	:		JIC/	here	
Furing m	achine	es, decision problems, time and space complex	kity, polynomial	time algor	ithms, N
		eteness, standard time and space complexity			
approxim	ation	algorithms, randomized algorithms and comp	plexity classes b	ased on ra	ndomize
		s, interactive proofs and their relation to appro	oximation.		
Expected					
		vill be able to :			
		ne whether a problem is computable, and	prove that some	e problem	is are no
	omput				
	-	ze problems into appropriate complexity class			
	-	problems based on their computational compl	lexity using redu	ctions	
		optimization problems using the concept of in	-		
			-		es
v. cl	assify	optimization problems using the concept of in	-		es
v. cl Fext Boo	assify ks:	optimization problems using the concept of in optimization problems into appropriate appro-	eximation comple	exity classe	
v. cl Fext Boo 1. N	assify ks: Iichae	optimization problems using the concept of in optimization problems into appropriate appro	computation, (Fi	exity classo rst editio	n - PW
v. cl Text Boo 1. M P	assify bks: Aichae ublish	optimization problems using the concept of in optimization problems into appropriate appro-	computation, (Fi	exity classo rst editio	n - PW
v. cl Fext Boo 1. N P 2	assify bks: Aichae ublish 005).	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second editi	Computation, (Fi	exity classe rst editio Course Te	n - PW chnology
v. cl Fext Boo 1. N P 2 2. S	assify ks: Iichae ublish 005). anjeev	optimization problems using the concept of in optimization problems into appropriate appro el Sipser, Introduction to the Theory of C ing Company, January 1997, or second editional C Arora and Boaz Barak, Computational C	Computation, (Fi	exity classe rst editio Course Te	n - PW chnology
v. cl Fext Boo 1. N P 2 2. S C	assify ks: Iichae ublish 005). anjeev Cambri	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second editi	Computation, (Fi	exity classe rst editio Course Te	n - PW
v. cl Text Boo 1. M P 2 2. S C Reference	assify ks: Iichae ublish 005). anjeev Cambri ces:	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009	Computation, (Fi ion - Thomson (Complexity: A	rst editio Course Te Modern	n - PWS chnology
v. cl Fext Boo 1. N P 2 2. S C Reference 1. C	assify ks: Aichae ublish 005). anjeev Cambri ces: hristo	optimization problems using the concept of in optimization problems into appropriate appro el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity	Computation completion (Finder Finder Computation) (Finder Finder	exity classe rst editio Course Te Modern 2 ey, 1994.	n - PW chnology Approach
v. cl Fext Boo 1. N P 2. S C Reference 1. C 2. N	assify ks: Aichae ublish 005). anjeev <u>Cambri</u> res: hristo I R Ga	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009	Computation completion (Finder Finder Computation) (Finder Finder	exity classe rst editio Course Te Modern 2 ey, 1994.	n - PW chnology Approach
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. N C	assify Iichae ublish 005). anjeev Cambri ces: hristo I R Ga omple	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979.	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnology Approach ory of NF
v. cl Text Boo 1. N P 2. S C Reference 1. C 2. M C 3. O	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnology Approach ory of NF
v. cl Text Boo 1. N P 2. S C Reference 1. C 2. M C 3. O	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnolog Approach ory of NF
v. cl Text Boo 1. N P 2. S C Reference 1. C 2. M C 3. O	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnolog Approach ory of NF
v. cl Text Boo 1. N P 2. S C Reference 1. C 2. M C 3. O	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnology Approach ory of NF End
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. M C 3. O 4. V	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern 2 ey, 1994. o the Theo ress, 2008	n - PW chnology Approach ory of NF End Sem.
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. M C 3. O 4. V	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern ey, 1994. o the Theo	n - PW chnology Approach ory of NF End Sem. Exam
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. M C 3. O 4. V	assify Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple oded G	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern 2 ey, 1994. o the Theo ress, 2008	n - PW chnology Approach ory of NF End Sem. Exam Marks
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. M C 3. O	assify ks: Aichae ublish 005). anjeev Cambri res: hristo 1 R Ga omple ded G ijay V	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan Contents	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p rVerlag, 2001	exity classe rst editio Course Te Modern 2 ey, 1994. o the Theo ress, 2008 Hours	n - PW chnology Approach ory of NP End Sem.
v. cl Text Boo 1. N P 2 2. S C Reference 1. C 2. M C 3. O 4. V	assify ks: Aichae ublish 005). anjeev 2ambri ces: hristo I R Ga omple ded G ijay V	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan Contents	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p	exity classe rst editio Course Te Modern 2 ey, 1994. o the Theo ress, 2008 Hours	n - PW chnology Approach ory of NF End Sem. Exam Marks
v. cl Fext Boo 1. N P 2. S C Reference 1. C 2. N C 3. O 4. V Module	assify Ass: Aichae ublish 005). anjeev Cambri ces: hristo I R Ga omple ded G ijay V	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan Contents	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p rVerlag, 2001	exity classe rst editio Course Te Modern 4 ey, 1994. o the Theo ress, 2008 Hours	n - PW chnology Approach ory of NF End Sem. Exam Marks %
v. cl Fext Boo 1. M P 2 2. S C Reference 1. C 2. M C 3. O 4. V	assify ks: Aichae ublish 005). anjeev Cambri res: hristo I R Ga omple ded G ijay V Intro comp Turi	optimization problems using the concept of in optimization problems into appropriate appro- el Sipser, Introduction to the Theory of C ing Company, January 1997, or second edition v Arora and Boaz Barak, Computational C idge University Press,2009 s H Papadimitriou, Computational Complexity arey and D S Johnson, Computers and Intracta eteness, Freeman, 1979. Foldreich, Computational Complexity, Cambrid vazirani, Approximation Algorithms, Springer Course Plan Contents	Computation, (Fi ion - Thomson (Complexity: A y, Addison-Wesh bility: A Guide t dge University p rVerlag, 2001	xity classe rst editio Course Te Modern 2 ey, 1994. o the Theo ress, 2008 Hours 5	n - PW chnology Approach ory of NF End Sem. Exam Marks

П	 The Halting Problem and Undecidable Languages: Counting and diagonalization. Tape reduction. Universal Turing machine. Undecidability of halting. Reductions. Rice's theorem. Deterministic Complexity Classes: DTIME[t]. Linear Speed-up Theorem. P Time. Polynomial reducibility. Polytime algorithms: 2-satisfiability, 2-colourability. 	8	15%
	FIRST INTERNAL EXAM		
Ш	NP and NP-completeness: Non-deterministic Turing machines. NTIME[t]. NP. Polynomial time verification. NP-completeness. Cook-Levin Theorem. Polynomial transformations: 3- satisfiability, clique, colourability, Hamilton cycle, partition problems. Pseudo-polynomial time. Strong NP-completeness. Knapsack. NP-hardness.	8	15%
IV	Space complexity and hierarchy theorems: DSPACE[s]. Linear Space Compression Theorem. PSPACE, NPSPACE. PSPACE = NPSPACE. PSPACE-completeness. Quantified Boolean Formula problem is PSPACE-complete. L, NL and NL- completeness. NL=coNL. Hierarchy theorems.	8	15%
	SECOND INTERNAL EXAM		
V	Randomized Complexity: The classes BPP, RP, ZPP. Interactive proof systems: IP = PSPACE.	6	20%
VI	Optimization and approximation: Combinatorial optimization problems. Relative error. Bin-packing problem. Polynomial and fully polynomial approximation schemes. Vertex cover, traveling salesman problem, minimum partition.	7	20%
	END SEMESTER EXAM	14	1

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 All the TEN questions have to be answered.


3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

a. Total marks : 18

- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

Course code	Course Name	L-T-P - Credits		ear of oduction
CS472	PRINCIPLES OF INFORMATION SECURITY	8-0-0-3		2016
• To etc	introduce fundamental concepts of security. introduce and discuss the relevance of security in operation		n, web	services
control m	of computer security, Security concepts, Need of Security, A atrix, Security policies, Software vulnerabilities, Security LAN security, Cell phone security, Secure Electronic tran	in curr	ent do	omains -
Expected	Outcome: nt will be able to : appreciate the common threats faced today interpret the foundational theory behind information securi design a secure system identify the potential vulnerabilities in software appreciate the relevance of security in various domains develop secure web services and perform secure e-transacti			
Text Bool 1. Be 20	ss: rnard Menezes, Network security and Cryptography, Ce 10.	engage L		g India,
 M Bishop, Computer Security: Art and Science, Pearson Education, 2003. References: E Whiteman and J Mattord, Principles of information security 4th edn, Cengage Learning V K Pachghare, Cryptography and information security, PHI Behrousz A Forouzan, D Mukhopadhyay, Cryptography and network Security, McGraw Hill W Mao, Modern Cryptography: Theory & Practice, Pearson Education, 2004. C P. Fleeger and S L Fleeger, Security in Computing, 3/e, Pearson Education, 2003. 				
	Course Plan	/	,	
Module	2014 Contents	Н	lours	End Sem. Exam Marks
Ι	concepts, Need of Security- Threats- Deliberate soft attacks, Deviation in quality of service, Attacks- malic code, brute force, Timing attack, sniffers	cious ccess and	7	15%

	Convity religion and models, confidentiality religion Dell		
тт	Security policies and models: confidentiality policies, Bell-	7	1507
II	LaPadula model, Integrity policies, Biba model, Clark-Wilson	/	15%
	models, Chinese wall model, waterfall model		
	FIRST INTERNAL EXAMINATION		
	Software vulnerabilities: Buffer and stack overflow, Cross-		
III	site scripting(XSS), and vulnerabilities, SQL injection and	6	15%
	vulnerabilities, Phishing.		
137	Malware: Viruses, Worms and Trojans. Topological worms.	6	15%
IV	Internet propagation models for worms.	0	13%
	SECOND INTERNAL EXAMINATION	V.I	
	Security in current domains: Wireless LAN security - WEP	100	
T 7	details. wireless LAN vulnerabilities - frame spoofing.	8	20%
V	Cellphone security - GSM and UMTS security. Mobile		
	malware - bluetooth security issues.		
VI	Secure Electronics transactions: Framework, strength and		
	weakness, Security in current applications : Online banking,	0	2007
	Credit Card Payment Systems.	8	20%
	Web Services security: XML, SOAP, SAML, RFID		
	END SEMESTER EXAM		

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions are to be answered.

3. Part B

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.