

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech - 2024

FIRST YEAR SYLLABUS (GROUP A)

SEMESTER 1 GROUP A

SEMESTER S1

MATHEMATICS FOR INFORMATION SCIENCE – 1 (Group A)

Course Code	GAMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus	Course Type	Theory

Course Objectives:

1. To provide students with essential skills in analyzing functions of several variables, identifying extrema, and optimizing processes to preparing them to address diverse engineering applications and challenges.

Module No.	Syllabus Description	Contact Hours
1	Limits of Function Values, Continuity at a point, ContinuousFunctions, Rates of Change: Derivative at a Point, Derivative as a Function, Secondand Higher-Order Derivatives, Instantaneous Rates of Change, Chain Rule, Implicit Differentiation, Tangents and Normal Lines, Linearization, Concavity: The Second Derivative Test for Concavity. [Relevant topics from: Text 1- sections 2.2, 2.5, 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.9, 4.4]	9
2	Functions of Several Variables: Domains and Ranges, Level curvesof two variables, Limits for functions of two variables, Continuity for functions of two variables, Partial derivatives of a functions of more than two variables, Partial derivatives and continuity, Second-Order partial derivatives, The mixed derivative theorem, TheChain Rule: Functions of two variables [Relevant topics from: Text 1- sections 14.1, 14.2, 14.3, 14.4]	9

3	Properties of the Directional Derivative, Local Extreme Values for Functions of Two Variables: Relative extrema, First derivative theorem for local extreme values, Critical point, saddle point, Second Derivative Test for Local ExtremeValues, Absolute Maxima and Minima on Closed Bounded Regions. [Relevant topics from: Text 1- sections 14.4, 14.5, 14.7] Constrained Maxima and Minima, The Method of Lagrange Multipliers with one constraint, The Method of Lagrange Multipliers with two	9
4	constraints, Method of Steepest Descent (only two variables), LPP-Formation, Solution of LPP using graphic method. [Relevant topics from: Text-1 section 14.8, Text-2 sections 22.1, 22.2, 22.3]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Apply various concepts in calculus to linearize functions and to analyze concavity.	К3	
CO2	Calculate the limits for functions of two variables and partial derivatives of multivariable functions.	К3	
CO3	Interpret directional derivative and solve maxima and minima of multivariable functions.	КЗ	
CO4	Solve constrained maxima and minima, LPP and understand the method of Steepest Descent.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	_	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil,Przemyslaw Bogacki	Pearson	15 th edition, 2023			
2	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Calculus	Howard Anton, Irl Bivens, Stephens Davis	Wiley	10 th edition,2012			
2	Optimization: Algorithms and Applications	Rajesh Kumar Arora	CRC Press	1 st edition, 2015			
3	Multivariable Calculus	Ron Larson, Bruce Edwards	Brooks/Cole, Cengage Learning	10 th edition,2014			
4	Calculus & Its Applications	Goldstein, Schneider, Lay, Asmar	Pearson	14 th edition,2018			
5	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021			
6	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/111106146					
2	https://nptel.ac.in/courses/111107108					
3	https://nptel.ac.in/courses/111107108					
4	https://nptel.ac.in/courses/111107108					

SEMESTER 1 / 2 PHYSICS FOR INFORMATION SCIENCE

(Common To Group A)

Course Code	GAPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- To equip students with a strong foundation in the fundamentals of Physics, impart this knowledge
 within the context of Information Science disciplines, cultivate scientific attitudes and critical
 thinking skills, and enable students to integrate Physics concepts with their core Information
 Science programs.
- 2. To make the students gain practical knowledge to correlate the theoretical studies and to develop practical applications of engineering.

Module No.	Syllabus Description	Contact Hours
	Electrical conductivity	
	Classical free electron theory, Electrical conductivity in metals, Fermi	
1	Dirac distribution, Variation of Fermi function with temperature, Fermi	
	Energy, Energy bands, Classification of materials into conductor,	
	semiconductor and insulator.	
	Superconductivity, Transition temperature, Critical field, Meissner effect,	
	Type I and Type II Super conductors. BCS Theory, Applications of	
	superconductors.	

	Quantum Mechanics	
	Introduction, Concept of uncertainty and conjugate observables	
	(qualitative), Uncertainty principle (statement only), Application of	
2	uncertainty principle- Absence of electron inside nucleus - Natural line	
	broadening, Wave function – properties - physical interpretation,	9
	Formulation of time dependent and time independent Schrodinger	-
	equations, Particle in a one- dimensional box - Derivation of energy eigen	
	values and normalized wave function, Quantum Mechanical Tunnelling	
	(Qualitative)	
	Semiconductor Physics	
	Intrinsic semiconductor, Derivation of density of electrons in conduction	
	band and density of holes in valence band, Intrinsic carrier concentration,	
3	Variation of Intrinsic carrier concentration with temperature, Extrinsic	
	semiconductor (qualitative)	9
	Formation of p-n junction, Fermi level in semiconductors-intrinsic and	
	extrinsic, Energy band diagram of p-n junction - Qualitative description of	
	charge flow across a p-n junction - Forward and reverse biased p-n	
	junctions, Diode equation (Derivation), I-V Characteristics of p-n junction	
	Semiconductor Devices	
	Semiconductor devices- Rectifiers- Full wave and Half wave. Zener diode-	
4	VI characteristics, Tunnel diode-VI characteristics, SemiconductorLaser	
7	(Construction and working), Applications	9
	Photonic devices (Qualitative treatment only) - Photo detectors (Junction	-
	and PIN photodiodes), Solar cells- IV Characteristics, Efficiency, Stringing	
	of Solar cells to solar panel, Light Emitting Diode, Applications	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain electrical conductivity and Superconductivity.	K2
CO2	Explain the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	K2
CO3	Apply the fundamentals of Semiconductor Physics in engineering.	К3
CO4	Describe the behaviour of semiconductor materials in semiconductor devices.	K2
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3	3										3
CO4	3											3
CO5	3	3			3							3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017					
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003					
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995					
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002					
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010					
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022					
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019					
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017					
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016					

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/115103108				
2	https://nptel.ac.in/courses/115101107 https://nptel.ac.in/courses/115102023				
3	https://nptel.ac.in/courses/108106181				
4	https://nptel.ac.in/courses/108108112				

Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding ofthe upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of thetheoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during aviva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

1. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 10 Experiments)

Experiment No.	Experiment				
1	Diode characteristics				
2	Zener diode- V-I characteristics				
3	Tunnel diode –V-I characteristics				
4	Half wave rectifier				
5	Full wave rectifier				
6	Hall effect in semiconductors				
7	Determination of band gap energy of a semiconductor				

8	Characteristics of LED
9	Solar Cell- V-I and Intensity Characteristics
10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimetre scale as a grating
12	Compare the variation of current with potential difference, for a metal, filamentbulb and semiconductor diode.
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode - V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S1/S2

CHEMISTRY FOR INFORMATION SCIENCE AND ELECTRICAL SCIENCE

(Common to Group A & B)

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To equip students with a comprehensive understanding of chemistry concepts that are relevant to engineering applications.
- **2.** To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- **3.** To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on the quality of life.

Module No.	Syllabus Description	Contact Hours					
	Electrochemistry and Corrosion Science (9 Hours)						
	Electrochemical Cell- Electrode potential- Nernst equation for single						
	electrode and cell (Numerical problems)- Reference electrodes – SHE & Calomel electrode –Construction and Working - Electrochemical series -						
1							
	Applications – Glass Electrode & pH Measurement-Conductivity-	9					
	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel						
	cell (acid electrolyte only) construction and working.						
	Corrosion -Electrochemical corrosion mechanism (acidic & alkaline						

	medium) - Galvanic series - Corrosion control methods - Cathodic Protection	
	- Sacrificial anodic protection and impressed current cathodic protection -	
	Electroplating of copper - Electroless plating of copper.	
	Materials for Electronic Applications (9 Hrs)	
	Nanomaterials - Classification based on Dimension & Materials- Synthesis	
	- Sol gel & Chemical Reduction - Applications of nanomaterials	
	- Carbon Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots -	
	structure, properties & application.	
2	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated	
	polymers (Examples only)- Conducting Polymers-Classification-	9
	Polyaniline & Polypyrrole-synthesis, properties and applications.	
	Organic electronic materials and devices- construction, working and	
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized	
	Solar Cells (DSSC)	
	Materials used in Quantum computing Technology, Super capacitors,	
	Spintronics	
	Molecular Spectroscopy and Analytical Techniques (9 Hours)	
	Molecular Spectroscopy and Analytical Techniques (9 Hours) Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's	
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's	
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of	
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-Working and Application.	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-Working and Application. Electron Microscopic Techniques: SEM - Principle, instrumentation and	9
3	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-Working and Application. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications.	
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-Working and Application. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications. Environmental Chemistry (9Hrs)	9
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of conjugation in absorption maxima-Instrumentation-Applications - Vibrational spectroscopy - Principle-Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O - Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-Working and Application. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications. Environmental Chemistry (9Hrs) Water characteristics - Hardness - Types of hardness- Temporary and	

disinfection methods – chlorination-Break point chlorination, ozone and UV irradiation. Dissolved oxygen (DO), BOD and COD- Definition & Significance.

Waste Management: Sewage water treatment- Primary, Secondary and Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,

Tertiary - Flow diagram -Trickling filter and UASB process. E Waste, Methods of disposal – recycle, recovery and reuse. Chemistry of climate change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an introduction to Sustainable Development Goals.

Self-Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hybrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	
each carrying 3 marks	• Each question can have a maximum of 3 sub divisions.	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the Basic Concepts of Electrochemistry and Corrosion to explore the possible applications in various engineering fields	K2
CO2	Describe the use of various engineering materials in different industries	K2
CO3	Apply appropriate analytical techniques for the synthesis and characterization of various engineering materials.	К3
CO4	Outline various water treatment and waste management methods	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books							
Sl. N o	Title of the Book	Title of the Book Name of the Author/s Name Public		Edition and Year				
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018				
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018				
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005				
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995			
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017			
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015			
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996			
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014			
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024			
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008			

Video Links (NPTEL, SWAYAM)							
Module Link ID No.							
	https://archive.nptel.ac.in/courses/104/106/104106137/						
	https://archive.nptel.ac.in/courses/113/105/113105102/						
1	https://archive.nptel.ac.in/courses/113/104/113104082/						
	https://www.youtube.com/watch?v=BeSxFLvk1h0						
	https://archive.nptel.ac.in/courses/113/104/113104102/						
2	https://archive.nptel.ac.in/courses/104/105/104105124/						
	https://archive.nptel.ac.in/courses/105/104/105104157/						

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizingmaterials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask.

2. Result (2 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Any 10 Experiments Mandatory

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
_	(a) Urea-formaldehyde resin
5	(b) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in
6	solution
	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food
7	colorant)
8	Analysis of IR spectra

B. Tech 2024 –S1/S2

9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S1

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

(Common to A, B & D)

Course Code	GMEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparing engineering drawings.
- 2. To develop the ability to accurately interpret and understand engineering drawings.
- **3.** To learn the features of CAD software

Module No.	Syllabus Description				
1	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination) Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of a line. Inclination of lines with reference planes. True length and true inclinations of line inclined to both the reference planes.	9			
2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder only. Projection of solids in simple position including profile view.	9			

	Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	
3	Sections of Solids: Sections of Prisms, Pyramids, Cone and Cylinder only, with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes)	9
4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Sphere, Hemisphere and their combinations. Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitablesoftware. (CAD, only internal evaluation)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment+ Lab Exam	Internal Examination-1	Internal Examination- 2	Total
5	10+5	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

2 Questions from one module	Total
Total 8 Questions, each question carries 15 marks	
(15x4 =60marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the projection of points and lines located in different quadrants	К2
CO2	Prepare multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using CAD tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	2018 edn				
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	2016 edn				
3	Engineering Graphics	John, K. C.	Prentice Hall India Publishers	2017 edn				
4	Engineering Drawing,	Bhatt, N., D.	Charotar Publishing House Pvt Ltd.	60th edn 2019				
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	2022 edn				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.,	Prentice Hall India Publishers	2020 edn				
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	5th edn 2011				
3	Engineering Drawing	Parthasarathy, N. S., and Murali, V.	Oxford University Press	2015 edn				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/112/102/112102304/					
2	https://archive.nptel.ac.in/courses/112/102/112102304/					
3	https://archive.nptel.ac.in/courses/112/102/112102304/					
4	https://archive.nptel.ac.in/courses/112/102/112102304/					

SEMESTER S1

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Group A & B)

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- 2. Classify series and parallel magnetic circuits
- **3.** Analyse three phase AC systems
- 4. Describe the fundamental concepts of electronic components and devices
- 5. Outline the principles of communication systems
- **6.** Identify various applications of modern electronics in the contemporary world

Module No.	Syllabus Description			
1	Elementary concepts of DC electric circuits: Current and Voltage Division Rule - Relative potential Capacitors & Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff's laws - numerical problems. Star-delta conversion (resistive networks only - derivation notrequired) - numerical problems. Analysis of DC Electric circuits: Mesh current method - matrix representation - Solution of network equations.	Hours 11		
	-			

	Node voltage methods-matrix representation-solution of network equations	
	by matrix methods - numerical problems.	
	Elementary Concepts of Magnetic circuits:	
	Magnetic Circuits: Basic Terminology: MMF, field strength, fluxdensity,	
	reluctance - Comparison between electric and magnetic circuits - Series and	
	parallel magnetic circuits with composite	
	materials (numerical problems not needed)	
	Electromagnetic Induction:	
	Faraday's laws, Lenz's law- statically induced and dynamically induced emf	
	- Self-inductance and mutual inductance, coefficient of coupling (numerical	
	problems not needed)	
	Alternating Current fundamentals:	
	Generation of alternating voltages - Representation of sinusoidal	
	waveforms: frequency, period, average value, RMS value and form factor -	
	numerical problems	
2	AC Circuits: Phasor representation of sinusoidal quantities, Trigonometric,	
	Rectangular, Polar and complex forms.	
	Analysis of simple AC circuits: Purely resistive, inductive & capacitive	11
	circuits; Inductive and capacitive reactance, concept of impedance -	
	numerical problems.	
	RL, RC and RLC series circuits- power factor, active, reactive and apparent	
	power. Simple numerical problems.	
	Three phase AC systems: Generation of three phase voltages, advantages of	
	three phase systems, star and delta connections (balanced only), relation	
	between line and phase voltages, line and	
	phase currents- numerical problems	
	Introduction to Electronic devices:	
3	Passive and active components in electronics	
2	Working of PN junction diode, V-I characteristics of PN Junction diode	13

Block diagram of DC power supply, circuit and working of half wave, full wave and bridge rectifiers, ripple factor (with and without capacitor filters) Construction, working and V-I Characteristics of BJT, Input output characteristics of CE configuration, Comparison of CE, CB and CC configurations Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P- Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagram of Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare and agriculture (Case study only)		Zener diode and avalanche breakdown. Basics of Zener voltage regulator	
Construction, working and V-I Characteristics of BJT, Input output characteristics of CE configuration, Comparison of CE, CB and CC configurations Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P- Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram ofAM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics — IoT based smart homes,healthcare		Block diagram of DC power supply, circuit and working of half wave, full	
Input output characteristics of CE configuration, Comparison of CE, CB and CC configurations Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagram of Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		wave and bridge rectifiers, ripple factor (with and without capacitor filters)	
and CC configurations Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram ofAM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		Construction, working and V-I Characteristics of BJT,	
Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes, healthcare		Input output characteristics of CE configuration, Comparison of CE, CB	
Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagram of Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		and CC configurations	
working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		Concept of biasing and load line	
RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		Transistor as a switch, Transistor as an amplifier (Circuit Diagram and	
to FET, Construction and working of N-channel and P-Channel MOSFETs Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		working)	
Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		RC coupled amplifier - Circuit diagram and frequency response Introduction	
Modern Electronics and its applications: General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		to FET, Construction and working of N-channel and P-	
General block diagram of a Communication system, Block diagramof Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		Channel MOSFETs	
Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes, healthcare		Modern Electronics and its applications:	
Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		General block diagram of a Communication system, Block diagramof	
and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes, healthcare		Fiber optic Communication system	
Basic concepts of Wired and Wireless communication, Blockdiagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes, healthcare		Concept of AM and FM (No derivation required), Block diagram of AM	
GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		and FM super-heterodyne receiver	
Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		Basic concepts of Wired and Wireless communication, Blockdiagram of	
Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, DigitalMultimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare	4	GSM	
Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare	4	Comparison of 3G, 4G, 5G and 6G communication technologies Block	9
Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes,healthcare		diagrams of Electronic instrumentation system, DigitalMultimeter,	
Applications of modern electronics – IoT based smart homes,healthcare		Function generator	
		Introduction to CRO and Lissajous patterns	
and agriculture (Case study only)		Applications of modern electronics - IoT based smart homes, healthcare	
		and agriculture (Case study only)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
(8x3 =24marks)	divisions.	
(one 2 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC	
	electric circuits	K2
CO2	Classify series and parallel magnetic circuits	K2
CO3	Analyse three phase AC systems	K2
CO4	Explain the fundamental concepts of electronic components and	
	devices	K2
CO5	Outline the principles of communication systems	K2
CO6	Identify various applications of modern electronics in the	
	contemporary world	K2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019			
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010			
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018			
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020			
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015			
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017			
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			

SEMESTER S1

ALGORITHMIC THINKING WITH PYTHON

(Common to All Branches)

Course Code	UCEST105	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- **2.** To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

Module	Syllabus	Contact
No.	Description	Hours
1	PROBLEM-SOLVING STRATEGIES:- Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward). THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution. ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators and their precedence.	7

2	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition(for, while, repeat-until loops), Sample problems* FLOWCHARTS**:- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page connector. *- Evaluate an expression, d=a+b*c, find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits). ** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for the sample problems listed earlier may be discussed	9
3	SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop. Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using <i>Numpy</i> library). DECOMPOSITION AND MODULARIZATION*:- Problem decomposition as a strategy for solving complex problems, Modularization, Motivation for modularization, Defining and using functions in Python, Functions with multiple return values	10

RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, Sample problems -Finding the **n**th Fibonacci number, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum of digits of a positive number **. * The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of $n \ge 3$ integers as examples. (Not tobe limited to these two exercises. More can be worked out if time permits). ** Not to be limited to these exercises. More can be worked out if time permits. COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING (Introductory diagrammatic/algorithmic explanations only. Analysis not required):-Brute-force Approach -Example: Padlock, Password guessing Divide-and-conquer Approach -Example: The Merge Sort Algorithm Advantages of Divide and Conquer Approach Disadvantages of Divide and Conquer Approach Dynamic Programming Approach Example: Fibonacci series Recursion vs Dynamic Programming Greedy Algorithm Approach 10 Example: Given an array of positive integers each indicating the completion time for a task, find the maximum number of tasks that can be completed in the limited amount of time that you have. Motivations for the Greedy Approach Characteristics of the Greedy Algorithm Greedy Algorithms vs Dynamic Programming Randomized Approach Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting n different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one?

- Example 2: **n** people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty andreturns the **n** hats randomly back to each person. What is the expected number of people who get back their hats?
- Motivations for the Randomized Approach

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written Examination)	Internal Examination-2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
, ,	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Utilize computing as a model for solving real-world problems.	К2
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3
CO3	Utilize effective algorithms to solve the formulated models and translate algorithms into executable programs.	К3
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	КЗ

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Refe	rence Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	9/e, 2011
2	How to Solve It: A New Aspect of Mathematical Method	George Pólya	Princeton University Press	2/e, 2015
3	Creative Problem Solving: An Introduction	Prufrock Press	4/e,2005	
4	Psychology (Sec. Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., & Perlmutter, M	H5P Edition	1/e, 2021
5	Computational Thinking: A Primer for Programmers and Data Scientists	G Venkatesh Madhavan Mukund	Mylspot Education Services Pvt Ltd	1/e, 2020
6	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2/e, 2001
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024
8	Introduction to Computation and Programming using Python	Guttag John V	PHI	2/e., 2016

	Video Links (NPTEL, SWAYAM)								
Module	Link ID								
No.									
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/								
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview								

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify three ill-defined problems and well-defined problems
- 2. Identify five use cases for Trial and error, Heuristics, backtracking, and Means-ends analysis.
- 3. Use a diagram to solve the Tower of Hanoi for three pegs with the minimum number of moves.
- Evaluate different algorithms discussed earlier based on their efficiency by counting the number of steps.
- 5. A recursive function that takes a number and returns the sum of all the numbers from zero to that number.
- 6. A recursive function that takes a number as an input and returns the factorial of that number.
- 7. A recursive function that takes a number 'n' and returns the nth Fibonacci number.
- 8. A recursive function that takes an array of numbers as input and returns the product of all the numbers in the array.
- 9. A program to reverse the contents of an **1D** array without using a second array.
- 10. To register for the end-semester examination, you need to log into the University portal with your credentials. Write a program to validate the credentials. Assume that the usernames are stored in an array of strings called **USERNAME** and the corresponding passwords are stored in another array of strings called **PASSWORD** such that **password[i]** is the password for the user **username[i]**.
- 11. You are given a list and your task is to divide it to make two smaller lists. The sublists should be made from alternate elements in the original list. So if the original list is {5,1,4,12,6}, then one sublist should be {5,4,6} and the other should be {1,12}.
- 12. A program that takes three points in a 2D plane and determines whether they are collinear. Two pairs of points are collinear if they have the same slope.

LAB Experiments:

- 1. Simple desktop calculator using Python. Only the five basic arithmetic operators.
- 2. Create, concatenate, and print a string and access a sub-string from a given string.
- 3. Familiarize time and date in various formats (Eg. "Thu Jul 11 10:26:23 IST 2024").
- 4. Write a program to create, append, and remove lists in Python using NumPy.
- 5. Program to find the largest of three numbers.
- Convert temperature values back and forth between Celsius (c), and Fahrenheit (f). [Formula: c/5 = f-32/9]
- 7. Program to construct patterns of stars (*), using a nested for loop.
- 8. A program that prints prime numbers less than N.

- 9. Program to find the factorial of a number using Recursion.
- 10. Recursive function to add two positive numbers.
- 11. Recursive function to multiply two positive numbers.
- 12. Recursive function to find the greatest common divisor of two positive numbers.
- 13. A program that accepts the lengths of three sides of a triangle as inputs. The program should output whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 14. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 15. Program to check whether the given number is a valid mobile number or not using functions.

Rules:

- 1. Every number should contain exactly 10 digits.
- 2. The first digit should be 7 or 8 or 9
- 16. Input two lists from the user. Merge these lists into a third list such that in the merged list, all even numbers occur first followed by odd numbers. Both the even numbers and odd numbers should be in sorted order.
- 17. Write a program to play a sticks game in which there are 16 sticks. Two players take turns to play the game. Each player picks one set of sticks (needn't be adjacent) during his turn. A set contains 1, 2, or 3 sticks. The player who takes the last stick is the loser. The number of sticks in the set is to be input.
- 18. Suppose you're on a game show, and you are given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat. He then asks, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
 - (source:https://en.wikipedia.org/wiki/Monty_Hall_problem#:~:text=The%20Monty%20Hall%20pr oblem%20is,the%20American%20Statistician%20in%201975.)

SEMESTER S1/S2

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

(Common to All Groups except for Civil Engineering Branch)

Course Code	GXESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To create awareness and familiarity with electrical wiring and safety measures to be taken.
- 2. To Identify various electronic components and to operate various measuring instruments
- 3. Learn to setup simple electronic circuits on breadboard and PCB

Expt. No.	Experiments
	Electrical Workshop (Minimum of 7 Experiments to be done)
1	a) Demonstrate the precautionary steps adopted in case of Electrical shocks.b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB, familiarize the ratings.
2	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug socket with individual control.
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)
4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.
5	Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.
6	Familiarisation of step up and step-down transformers, (use low voltage transformers) Measurement and representation of voltage and waveform to scale in graph sheet with the help of CRO
7	Familiarisation of rheostats, measurement of potential across resistance elements and introducing the concept of relative potential using a DC circuit.

	B.Tech 2024 –S1/S2
	a) Identify battery specifications using different types of batteries. (Lead acid, Li Ion,
8	NiCd etc.)
8	b) Familiarize different types of earthing (Pipe, Plate Earthing, Mat Schemes) and
	ground enhancing materials (GEM).
	ELECTRONICS WORKSHOP
	(Minimum of 7 Experiments to be done)
	Familiarization/Identification of electronic components with specification (Functionality,
1	type, size, colour coding, package, symbol and cost of -Active, Passive, Electrical,
1	Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays,
	Crystals, Displays, Fasteners, Heat sink etc.)
	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data sheets of
2	discrete components and IC's
	Familiarization/Application of testing instruments and commonly used tools Multimeter,
3	Function generator, Power supply, CRO, DSO.
3	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers,
	Crimping tool, Hot air soldering and de-soldering station
4	Testing of electronic components using multimeter - Resistor, Capacitor, Diode, Transistor
4	and JFET.
	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processingmethods.
5	Design and fabrication of a single sided PCB for a simple circuit.
	Inter-connection methods and soldering practice.
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety
	precautions.
	Soldering practice in connectors and general-purpose PCB, Crimping.

	Assembling of electronic circuit/system on general purpose PCB, test and show the
	functioning (Any two)-
7	Fixed voltage power supply with transformer
	Rectifier diode
	Capacitor filter
	Zener/IC regulator
	Square wave generation using IC 555 timer in IC base.
8	Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
9	Introduction to EDA tools (such as KiCad or XCircuit)

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timelycompletion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculumis that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate safety measures against electrical shocks	K2
CO2	Familiarise with transformers, rheostats, batteries and earthing schemes	K2
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	K3
CO4	Identify various electronic components	K2
CO5	Operate various measuring instruments	К3
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	К3
CO7	Build the ability to work in a team with good interpersonal skills	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	1					2	1					2
CO3	2					1						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	1	3	2	1		2			3
CO7									3	2		2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Electrical Design Estimating and Costing	K B Raina and S KBhattacharya	New Age International Publishers	2/e 2024			
2	Electrical Systems Design	M K Giridharan	I K International Publishing House Pvt. Ltd	3/e 2022			
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019			
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017			

Continuous Assessment with equal weightage for both specializations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

2. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

3. Viva Voce (10 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination with equal weightage in both specializations (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understandingeach step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality ofprogram output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	Theory and Practical

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- 2. To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- 3. To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- 4. To equip students with the ability to lead healthier lifestyles.
- 5. To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description			
	Human Body Systems related to Physical activity and its functions:			
	Respiratory System - Cardiovascular System.			
	Musculoskeletal System and the Major Muscle groups of the HumanBody.			
	Quantifying Physical Activity Energy Expenditure and Metabolic equivalent			
	of task (MET)			
1	Exercise Continuum: Light-intensity physical activity, Moderate -intensity	4		
	physical activity, Vigorous -intensity physical activity.			
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic			
	Physical Activity, Exercise and Health-Related Physical Fitness.			

	FITT principle to design an Exercise programme	
	Components of Health related Physical Fitness: - Cardiorespiratory	
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body	
	composition.	
	Concept of Health and Wellness: Health and wellness differentiation,	
	Factors affecting health and wellness. Mental health and Factors	
	affecting mental health.	
	Sports and Socialization: Sports and character building - Leadership	
	through Physical Activity and Sports	
2	Diet and nutrition: Exploring Micro and Macronutrients: Concept of	2
	Balanced diet	
	Carbohydrate & the Glycemic Index	
	Animal & Plant - based Proteins and their Effects on Human Health	
	Dietary Fats & their Effects on Human Health	
	Essential Vitamins and Minerals	
	Lifestyle management strategies to prevent / manage common	
	hypokinetic diseases and disorders - Obesity - Cardiovascular diseases	
	(e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis	
	- Musculoskeletal disorders (e.g., osteoarthritis, Low back pain,	
	Kyphosis, lordosis, flat foot, Knock knee)	
3	Meaning, Aims and objectives of yoga - Classification and	4
	importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama	
	and Its Types - Active Lifestyle and Stress Management Through	
	Yoga	
	Understanding on substance abuse and addiction - Psychoactive	
	substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative -	
	Cocaine -Other stimulants, including caffeine -Hallucinogens -	
	Tobacco -Volatile solvents.	

4	2

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context.

 Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method(CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2			
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2			
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2			
CO4	Explain the basics of first aid and describe common sports injuries	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999					
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022					

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018		
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022		
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence TreatmentCentre, New Delhi	2005		
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998		
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams& Wilkins.	American College ofSports Medicine.	2012		
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010		

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
	Students must attend at least 75% of both theory and practical classes. They will
	receive 10 marks based on their class attendance.
Attendance	Students who do not meet the minimum attendance requirement for a course, as
	specified in the B. Tech regulations, will not be eligible to proceed to the next
	criteria.
	Assignments will be given to students to assess their understanding of the subjects
	taught. Students will be required to make presentations on the subjects taught in
Assignment / Presentation	class, and their understanding of the subjects will be assessed.
Presentation	Based on the Assignments and Presentations the students will be awarded marks
	out of 20
	The Assignment / Presentation faculty handling the class will use the tests from the
	Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India.
	Measurements will be taken for all the tests of the FIT India Fitness Protocol and
	the evaluation will be based on the benchmark score received for the following tests:
	1. V Sit Reach Test
Activity	2. Partial Curl Up - 30 seconds
Evaluation	3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the aforementioned 4
	tests will be awarded pass marks for activity evaluation. Students who score better
	will be awarded a maximum mark of 20.
Activity	Physically challenged and medically unfit students can opt for an objective test to
Evaluation - Special	demonstrate their knowledge of the subjects taught. Based on their performance in
Circumstances	the objective test, they will be awarded marks out of 20.
Activity	Students who enrolled themselves in the NCC during the course period (between
Evaluation - Special	the start and end dates of the program) and attended 5 college level parades will be
Considerations -	awarded pass marks for activity evaluation. Students who attend more parades will
NCC	be eligible for a maximum mark of 20 based on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- **3.** With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- **4.** After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- **3.** Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.
- **4.** Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more inrhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder,

measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2 LIFE SKILLS AND PROFESSIONAL COMMUNICATION

(Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week(L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- To foster self-awareness and personal growth, enhance communication and interpersonal
 connection skills, promote effective participation in groups and teams, develop critical
 thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise
 emotional intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise
- **3.** To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials

generated from the activities. Students should also keep a journal related to the activities undertaken.

- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-	• Connecting with group members	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	• Time manage- ment - Gantt	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2	Chart	
2.1	Take an online personality development test, self-reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor ii) their friend/sibling/cousin	L	1	I	2	•Goal setting - Identification of skills and setting goal •Self-awareness •Discussion in groups •Group work- Compiling of ideas • Mind mapping	CO1
2.3	Role-storming exercise 2: Students assume the role of their teacher and write about the	SS	1	I	2	- ivinio mapping	CO1

B.Tech 2024 -S1/S2

	• C1-'11 D. T 1 1					5.1 <i>ech 2024 –</i> 31/32 	
	• Skills required as a B.Tech graduate						
	• Attitudes, habits, approaches required						
	and activities to be practised during their						
	B.Tech years, in order to achieve the set						
	goals						
2.4	Discuss the skills identified through						
	rolestorming excercise by each one	L	1	G	2		CO1
	within their own group and improvise						
	the list of skills						
2.5	Prepare a mind map based on the role-	SS	2	G	2		
	storming exercise and exhibit/present it	33	2		2		CO1
	in class						
3	Prepare a presentation on instances of	L	2 to 4	I	2	- E d	
	empathy they have observed in their	L	2 10 4	1		• Empathy	CO2
	own life or in other's life						
4.1	Each student connects and networks					Workplace	
	with a minimum of 3 professionals from	SS	3	I	2	awareness	
	industry/public sector organiza-					• Listening	
	tions/other agencies/NGOs /academia					• Communication -	
	(atleast 1 through LinkedIn)					interacting with	
4.2	Interact with them to understand their					people	
	workplace details including					Networking	
	• workplace skills required					through various	
	• their work experience	SS	3	I	4	media including	
	•activities they have done to enhance					LinkedIn	
	their employability during their B.Tech					• Discussion in	CO2
	years					groups	
	• suggestions on the different activities to					• Report prepara-	
	be done during B.Tech years					tion	
	Prepare a documentation of this					Creativity	
4.3	Discuss the different workplace details &						
	work readiness activities assimilated by	CC	2			Goal setting - Prep-	
	each through the interactions within their	SS	3	G	2	aration of action	
	group and compile the inputs collected by					plan	CO2
	the individuals						
	Prepare the Minutes of the discussions						
4.4	Report preparation based on the discus-	SS	4	G	3		
	sions						CO4
4.5	Perform a role-play based on the work-						
	place dynamics assimilated through in-	L	5	G	4		CO3
	teractions and group discussions						
	9F #8516110						

B.Tech 2024 -S1/S2

					_	B.1ech 2024 –31/32	,
4.6	Identify their own goal and prepare an action plan for their undergraduate jour-	SS	5	I	2		CO1
	ney to achieve the goal						
5.1	Salart a seal life small and that manying a						
3.1	Select a real-life problem that requires a technical solution and list the study ma-	L	6	G	2		
	terials needed						CO3
5.2	Listen to TED talks & video lectures						
3.2	from renowned Universities related to						
	the problem and prepare a one-page	SS	6	I	2		G0.4
	summary (Each group member should						CO4
	select a different resource)						
5.3	Use any online tech forum to gather	SS	6	G	2		
3.3	ideas for solving the problem chosen	55					CO5
5.4	Arrive at a possible solution using six	L	7	G	3		
J. T	thinking hat exercise	L	,				CO3
5.5	Prepare a report based on the problem-	SS	7	G	2	_	
3.3	solving experience	55	,				CO4
	solving experience						
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3	Trome building	CO6
7	Prepare a presentation on instances of	SS	9	I	2	Emotional intelli-	000
	demonstration of emotional intelligence					gence	CO2
8	Prepare a short video presentation on di-					Diversity	
	versity aspects observed in our society	SS	10	G	3		CO2,
	(3 to 5 minutes)						CO5
9	Take online Interview skills develop-					Interview skills	
	ment sessions like robotic interviews;	SS	10	I	2		CO6
	self-reflect and report						
10	Take an online listening test, self-reflect	SS	11	I	2	Listening skills	
	and report						CO6
11.1	Activities to improve English vocabu-	L	8	I/G	4		
	lary of students					 English vocabulary 	CO4
11.2	Activities to help students identify errors	L	9	I/G	2	• English language	
	in English language usage					skills	CO4
11.3	Activity to help students identify com-					• Writing	
	monly misspelled words, commonly	L	10	I/G	2	• Presentation	
	mispronounced words and confusing					• Group work	CO4
	words					• Self-reflection	
11.4	Write a self-reflection report on the						CO4
		SS	12	I	2		

B.Tech 2024 -S1/S2

						0.1ech 2024 –31/32	,
	improvement in English language com- munication through this course						
11.5	Presentation by groups on the experi- ence of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media platforms Profile building 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1		CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Table 2. Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	Hands-on sessions on day-to-day engineering skills and			3
	a self-reflection report on the experience gained:			
	Drilling practice using electric hand drilling machines.	24		
	Cutting of MS rod and flat using electric hand cutters.			
	3. Filing, finishing and smoothening using electrically operated hand grinders.			
	4. MS rod cutting using Hack saw by holding the work in bench wise.		Basic practical engineering	
	5. Study and handling different types of measuring instruments.		skills	
	6. Welding of MS, SS work pieces.			
	7. Pipe bending practice (PVC and GI).			
	8. Water tap fitting.			
	9. Water taps rubber seal changing practice.			
	10. Union and valves connection practice in pipes.			
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

	Course Outcome					
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	K5				
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5				
CO3	Develop thinking skills, problem-solving and decision-making skills	K5				
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6				
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6				
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	K6				

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022						
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020						
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023						
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016						
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016						
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018						
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017						
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023						
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004						

SEMESTER 2 GROUP A

SEMESTER S2 MATHEMATICS FOR INFORMATION SCIENCE - 2

(Group A)

Course Code	GAMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Elementary matrix operations	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of linear algebra focusing on fundamental concepts and applications, and to develop necessary skills to effectively utilize linear algebra in advanced studies and professional practice.

SYLLABUS

Module No.	Syllabus Description					
1	Linear systems of equations, Solution by Gauss elimination, Row echelon form and rank of a matrix, Fundamental theorem for linear systems - homogeneous and non-homogeneous (without proof), Eigen values and Eigen vectors of matrices, Diagonalization of matrices. [Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4]	9				
2	Vector Spaces, Examples of vector space $-R^n$ and M_{mxn} only, Subspaces, Examples as subspaces of R^n and M_{mxn} . Linear combinations of vectors in a vector space, Spanning sets, Linear dependence and independence, Basis for a vector space, The dimension of vector space, Coordinate representation in R^n , Change of basis in R^n : Transition Matrix (without proof). [Text 2: Relevant topics from sections 4.2, 4.3, 4.4, 4.5, 4.7]	9				

3	Vector length and unit vector, Dot product and angle between two vectors, The Cauchy- Schwarz Inequality, Inner product, Examples as R^n and M_{2x2} , Properties of inner products, Definitions of length, distance and angle, Orthogonal projections in inner product spaces, Orthogonal and orthonormal sets, Orthogonal and orthonormal basis, Gram-Schmidt orthonormalization process (without proof), The least squares problem, Orthogonal Subspaces, Solving the least square problems. [Text 2: Relevant topics from sections 5.1, 5.2, 5.3, 5.4]	9
4	Linear Transformations, Properties of linear transformations, Linear Transformation given by a matrix, Rotation in R^2 , Projection in R^3 , Kernel of a Linear Transformation and its basis, Range of a Linear Transformation and its basis, Rank and Nullity of a Linear Transformation, Sum of Rank and Nullity (without proof), Matrices for Linear Transformations. [Text 2: Relevant topics from sections 6.1, 6.2, 6.3]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B			
2 Questions from each	• Each question carries 9 marks.			
module.	• Two questions will be given from each module, out			
• Total of 8 Questions, each	of which 1 question should be answered.			
carrying 3 marks	• Each question can have a maximum of 3 sub	60		
	divisions.			
(8x3 =24marks)	(4x9 = 36 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	CO1 Solve system of linear equations, to evaluate eigen values and eigen vectors of matrices and to diagonalize matrices.					
CO2	Understand the concepts of vector spaces and subspaces and to apply their properties.	К3				
СОЗ	Describe inner product spaces and their properties, to apply orthonormalization process and to solve least square problems.	К3				
CO4	Understand the concept of linear transformation and to apply its properties, to find the rank and nullity of a linear transformation and to find the matrices of linear transformations.					

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016				
2	Elementary Linear Algebra	Ron Larson	Cengage Learning	8 th edition, 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mathematics for Machine Learning	Marc Peter Deisenroth, A. Aldo Faisal & Cheng SoonOng	Cambridge University Press	1 st edition, 2020				
2	Linear algebra and learning from data	Gilbert Strang	Wellesley- Cambridge Press	1 st edition, 2019				
3	Elementary Linear Algebra	Stephen Andrilli & David Hecker	Academic Press Inc.	4 th edition, 2010				
4	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019				

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/107/111107164/			
3	https://archive.nptel.ac.in/courses/111/107/111107164/			
4	https://archive.nptel.ac.in/courses/111/107/111107164/			

SEMESTER S1/S2 PHYSICS FOR INFORMATION SCIENCE

(Common to Group A)

Course Code	GAPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- To equip students with a strong foundation in the fundamentals of Physics, impart this knowledge
 within the context of Information Science disciplines, cultivate scientific attitudes and critical
 thinking skills, and enable students to integrate Physics concepts with their core Information
 Science programs.
- 2. To make the students gain practical knowledge to correlate the theoretical studies and to develop practical applications of engineering.

SYLLABUS

	(qualitative), Uncertainty principle (statement only), Application of	
	uncertainty principle- Absence of electron inside nucleus - Natural line	
	broadening, Wave function – properties - physical interpretation,	
	Formulation of time dependent and time independent Schrodinger	
	equations, Particle in a one- dimensional box - Derivation of energy eigen	
	values and normalized wave function, Quantum Mechanical Tunnelling	
	(Qualitative)	
	Semiconductor Physics	
	Intrinsic semiconductor, Derivation of density of electrons in conduction	
	band and density of holes in valence band, Intrinsic carrier concentration,	
3	Variation of Intrinsic carrier concentration with temperature, Extrinsic	
	semiconductor (qualitative)	9
	Formation of p-n junction, Fermi level in semiconductors-intrinsic and	
	extrinsic, Energy band diagram of p-n junction - Qualitative description of	
	charge flow across a p-n junction - Forward and reverse biased p-n junctions,	
	Diode equation (Derivation), I-V Characteristics of p-n junction	
	Semiconductor Devices	
	Semiconductor devices- Rectifiers- Full wave and Half wave. Zener diode-	
	VI characteristics, Tunnel diode-VI characteristics, SemiconductorLaser	
4	(Construction and working), Applications	
		9
	Photonic devices (Qualitative treatment only) - Photo detectors (Junction	
	and PIN photodiodes), Solar cells- IV Characteristics, Efficiency, Stringing	
	of Solar cells to solar panel, Light Emitting Diode, Applications	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain electrical conductivity and Superconductivity.	K2
CO2	Explain the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	К2
CO3	Apply the fundamentals of Semiconductor Physics in engineering.	К3
CO4	Describe the behaviour of semiconductor materials in semiconductor devices.	К2
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3	3										3
CO4	3											3
CO5	3	3			3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017			
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003			
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018			
		Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995			
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002			
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e				
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022			
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019			
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017			
7	A Text Book of Engineering Physics I. Dominic and. A. Nahari, Owl Book		Owl Books Publishers	Revised Edition, 2016			

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://nptel.ac.in/courses/115103108
2	https://nptel.ac.in/courses/115101107 https://nptel.ac.in/courses/115102023
3	https://nptel.ac.in/courses/108106181
4	https://nptel.ac.in/courses/108108112

Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during aviva voce session. *Final Marks Averaging:* The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure andunderstanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Minimum 10 Experiments)

Experiment No.	Experiment
1	Diode characteristics
2	Zener diode- V-I characteristics
3	Tunnel diode –V-I characteristics
4	Half wave rectifier
5	Full wave rectifier
6	Hall effect in semiconductors
7	Determination of band gap energy of a semiconductor
8	Characteristics of LED
9	Solar Cell- V-I and Intensity Characteristics
10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimeter scale as a grating

B.Tech 2024 –S1/S2

12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode - V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S1/S2

CHEMISTRY FOR INFORMATION SCIENCE AND ELECTRICAL SCIENCE

(Common to Group A & B)

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To equip students with a comprehensive understanding of chemistry concepts that are relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on the quality of life.

SYLLABUS

Module No.	Syllabus Description				
	Electrochemistry and Corrosion Science (9 Hours)				
	Electrochemical Cell- Electrode potential- Nernst equation for single				
	electrode and cell (Numerical problems)- Reference electrodes - SHE &				
	Calomel electrode -Construction and Working - Electrochemical series -				
	Applications - Glass Electrode & pH Measurement-Conductivity-				
1	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel				
	cell (acid electrolyte only) construction and working.	9			
	Corrosion -Electrochemical corrosion mechanism (acidic & alkaline				
	medium) - Galvanic series - Corrosion control methods - Cathodic Protection				
	- Sacrificial anodic protection and impressed current cathodic protection -				
	Electroplating of copper - Electroless plating of copper.				

	Materials for Electronic Applications (9 Hrs)	
	Nanomaterials - Classification based on Dimension & Materials- Synthesis	
	- Sol gel & Chemical Reduction - Applications of nanomaterials	
	- Carbon Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots -	
	structure, properties & application.	
2	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated	
	polymers (Examples only)- Conducting Polymers-Classification-	9
	Polyaniline & Polypyrrole-synthesis, properties and applications.	
	Organic electronic materials and devices- construction, working and	
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized	
	Solar Cells (DSSC)	
	Materials used in Quantum computing Technology, Super capacitors,	
	Spintronics	
	Molecular Spectroscopy and Analytical Techniques (9 Hours)	
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's	
	law - Numerical problems - Electronic Spectroscopy - Principle, Types of	
	electronic transitions -Role of conjugation in absorption maxima-	
3	Instrumentation-Applications - Vibrational spectroscopy - Principle-	
	Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -	9
	Applications	
	Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-	
	Working and Application.	
	Electron Microscopic Techniques: SEM - Principle, instrumentation and	
	Applications.	
	Environmental Chemistry (9Hrs)	
	Water characteristics - Hardness - Types of hardness- Temporary and	
	Permanent - Disadvantages of hard water -Degree of hardness (Numericals)	
4	Water softening methods-Ion exchange process- Principle, procedure and	
	advantages. Reverse osmosis – principle, process and advantages. – Water	9
	disinfection methods – chlorination-Break point chlorination, ozone and UV	
	irradiation. Dissolved oxygen (DO), BOD and COD- Definition &	
	Significance.	
	Waste Management: Sewage water treatment- Primary, Secondary and	

Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,	
Methods of disposal - recycle, recovery and reuse. Chemistry of climate	
change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an	
introduction to Sustainable Development Goals.	

Self-Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hydrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination-3 (Lab Examination)	Total
5	1 0	1 0	1 0	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions,	of which 1 question should be answered.	60
each carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
	Explain the Basic Concepts of Electrochemistry and Corrosion to					
CO1	explore the possible applications in various engineering fields					
CO2	K2					
	Apply appropriate analytical techniques for the synthesis and					
CO3	characterization of various engineering materials.					
CO4	Outline various water treatment and waste management methods	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1		B. L. Tembe, Kamaluddin, M. S.Krishnan	NPTEL Web-book	2018
2	Physical Chemistry	P. W. Atkins	Oxford UniversityPress	International Edition- 2018
4	Instrumental Methods of Analysis	H. Willard, L. L.Merritt	CBS Publishers	7th Edition-2005
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995				
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017				
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015				
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996				
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014				
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024				
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
	https://archive.nptel.ac.in/courses/104/106/104106137/					
_	https://archive.nptel.ac.in/courses/113/105/113105102/					
1	https://archive.nptel.ac.in/courses/113/104/113104082/					
	https://www.youtube.com/watch?v=BeSxFLvk1h0					
	https://archive.nptel.ac.in/courses/113/104/113104102/					
2	https://archive.nptel.ac.in/courses/104/105/104105124/					
	https://archive.nptel.ac.in/courses/105/104/105104157/					

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding ofthe upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of thetheoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during aviva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programmingtask.

2. Result (2 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

*Any 10 Experiments Mandatory

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
_	(a) Urea-formaldehyde resin
5	(b) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in
6	solution
7	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S2

FOUNDATIONS OF COMPUTING: FROM HARDWARE ESSENTIALSTO WEB DESIGN

(Common to Group A & B)

Course Code	GXEST203	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the students to the fundamental building blocks of an IT infrastructure including the computing systems, its peripherals, Operating Systems and Networking.
- 2. To make the learners capable of developing and deploying simple and dynamic websites.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Computer Hardware – CPU, Memory - Memory hierarchy: registers, cache,	
1	RAM, virtual memory, Motherboard - Computer Peripherals - I/O devices, Storage devices- HDDs, SSDs, optical drives, I/O communication and device	9
	management, Interface cards – Buses – Firmware - Boot process	
2	Binary representation of data and numbers, Integer Representation, Data storage units - bits, bytes, kilobytes, etc., ASCII and Unicode, CPU Architecture and Instruction Set: Basic CPU architecture - ALU, registers, control unit, Instruction format and assembly language (basics only) Fetch-execute cycle and instruction execution.	9
3	Computer System Software - Operating Systems, Basic commands in Linux / Windows, Shell scripting (bash). Computer Communications – LAN, MAN, WAN, Client/Server networks, Peer-to-Peer networks, Topologies. Basics of IP addresses, DHCP, NAT, Network Security (Desktop & Perimeter), DNS, VPN, Routers, Client-Server, Internet, WWW, Web servers.	9

	Web Design (Basics of HTML, CSS, and JavaScript) – Understanding the	
4	web content delivery, Understanding HTML and XHTML Connections,	9
	Understanding Cascading Style Sheets, Understanding JavaScript	

Course Assessment Method (CIE: 40 marks, ESE:60)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental components and the working of an IT	K2
	environment.	
CO2	Explain the data representations, CPU architectures, and the basic	K2
	functioning of a computer.	
CO3	Explain the operating systems, computer network architecture, and	K2
	necessary protocols used.	
CO4	Develop simple interactive web pages and validate the inputs.	K3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3	3		3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	2/e , 2020			
2	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014			
3	HTML, CSS, and JavaScript All in One, Sams TeachYourself	Julie C. MeloniJennifer Kyrnin	Pearson	1/e, 2020			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Elements of Computing Systems, second edition: Building a Modern Computer from First Principles	Noam Nisan and Shimon Schocken	The MIT Press	2/e, 2021			
2	Peter Norton's Introduction to Computers	Peter Notron	McGrawHill	6/e, 2010			
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	1/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.nand2tetris.org/					
2	https://onlinecourses.swayam2.ac.in/nou20_cs05/preview					

SEMESTER S2

PROGRAMMING IN C

(Common to Group A & B)

Course Code	GXEST204	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To prepare learner to write versatile C programs for solving computational problems that they come across in their professional life.
- **2.** To equip the learner to write efficient C programs using suitable language constructs to solve real world computational problems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic Data types, Variables, Operators and its precedence, Bit-wise operators,	
1	Expressions; Statements - Input and Output statements; Structure of a C	
	program; Simple programs. Control Statements - if, if-else, nested if, switch, while, do-while, for, break & continue, nested loops.	
	Arrays - Single dimensional arrays, Defining an array, Array initialization,	
2	Accessing array elements; Enumerated data type; Type Definition; Two-dimensional arrays – Defining a two-dimensional array; Programs for matrix processing; Programs for sequential search; Bubble sort; Strings - Declaring a string variable, Reading and displaying strings, String related library functions – Programs for string matching.	9

3	Functions - Function definition, Function call, Function prototype, Parameter passing; Recursion; Passing array to function; Macros - Defining andcalling macros; Command line Arguments. Structures - Defining a Structure variable, Accessing members, Array of structures, Passing structure to function; Union. Storage Class - Storage Classes associated with variables: automatic, static, external and register.	9
4	Pointers - Declaration, Operations on pointers, Passing pointer to a function, Accessing array elements using pointers, Processing strings using pointers, Pointer to pointer, Array of pointers, Pointer to function, Pointer to structure, Dynamic Memory Allocation. Files- Different types of files in C, Opening & Closing a file, Writing to and Reading from a file, Processing files, Library functions related to file - fseek(), ftell(), fread(), fwrite().	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Infer a computational problem and develop C programs from them using basic constructs of C language including the control statements.	K2
CO2	Develop C programs using arrays, matrices, and strings.	К3
CO3	Utilize functions to find solution to the computational problems by dividing it into a number of modules and abstract data types.	К3
CO4	Develop C programs using pointers for dynamic data handling.	К3
CO5	Use files in C to permanently store and manipulate data.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12
CO1	3	3	3	3	-	-	-	-	-	-	-	3
CO2	3	3	3	3	-	-	-	-	-	-	-	3
CO3	3	3	3	3	-	-	-	-	-	_	-	3
CO4	3	3	3	3	-	-	-	-	-	-	-	3
CO5	3	3	3	3	-	-	-	-	-	-	-	3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Programming with C	Byron S Gottfried	Mc Graw Hill	4/e, 2018
2	Problem Solving and Program Design in C	Jeri R. Hanly, Elliot B. Koffman	Pearson	8/e, 2016

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	The C Programming Language	Brian W. Kernighan andDennis Ritchie	Pearson	2/e, 2015							
2	C The Complete Reference	Herbert Schildt	Mc Graw Hill	4/e, 2017							
3	Let us C	Yashavant Kanetkar	BPB Publishers	19/e, 2022							
4	Programming in ANSI C	E Balagurusamy	Mc Graw Hill	9/e, 2024							

SEMESTER S2 ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to all Branches)

Course Code	UCEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- 3. Create a comprehensive business plan for a new venture.
- **4.** Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance forstartups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration.

SYLLABUS

Module No.	Syllabus Description						
	Introduction to Ideation, Innovation & Entrepreneurship						
	What is Ideation?						
	Understanding Innovation						
	Frameworks for Innovation						
	The Entrepreneurial Mindset						
1	Starting a Business, types formation statutory compliances.	9					
	Resources for Aspiring Entrepreneurs						
	Introduction to Intellectual Property Rights (IPR)						
	Types of IPR: Patents, trademarks, copyrights, trade secrets						
	Strategies for protecting intellectual property based on the type						
	of innovation						

	Role of IPR in securing funding and competitive advantage
	Importance of building a strong team
	Identifying roles
	Skill sets
	Team dynamics
	Identifying Pain Points and problem statement
	Idea Generation Techniques
	Developing and Refining Ideas
	Develop strategies for bringing your innovation to life
	Problem and solution canvas preparation
	Orientation and canvas introduction
	Customer needs assessment
	Market segmentation
	Value proposition
	Competitive analysis
	Market entry strategy
	Market validation
	Regulatory and legal considerations
	Customer profiling
	Review of market research
2	• Customer segmentation 9
	Customer profiling
	Persona development
	Validation and feedback
	Prioritization and selection
	Communication and messaging
	Competitor analysis
	Identify competitors
	Competitor profiling
	SWOT analysis
	Market positioning
	Customer feedback and reviews

	Pricing analysis					
	Differentiation strategy					
	Benchmarking and improvement					
	Business plan preparation					
	Business plan framework					
	Market analysis					
	Product/ service description					
	Marketing and sales strategy					
	Operations plan					
	Financial projections					
	Risk management					
3	Prototype development plan preparation					
	Prototype requirements analysis					
	Technical specifications					
	Development approach					
	Development timeline					
	Resource allocation					
	Testing and quality assurance					
	Iterative development and feedback loop					
	Documentation and version control					
	Prototype development					
	Stakeholder engagement					
	strategies	9				
4	• Investors					
	• Partners					
	• Customers					
	Advisors & Mentors					

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 1 or 2 Questions from each module. Total of 8 Questions, each carrying3 marks (6x2 =12 marks) 	• 2 questions will be given from each module, out ofwhich 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x7 = 28 marks)	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gain foundational knowledge of Innovation and Entrepreneurship, Intellectual Property Rights (IPR) and their importance for startups.	K2
CO2	Develop a framework for identifying, curating and validating engineering-based business ideas.	К3
CO3	Learn essential tools for understanding product-market fit and customer needs.	К3
CO4	Create a comprehensive business plan for a new venture.	К6
CO5	Develop skills for prototyping, stakeholder engagement, and team collaboration.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	The Engineering Handbook	Richard C.Dorf	CRC Press	
2	The Innovator's DNA	Clayton M. Christensenand Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)
3	Start with Why	SIMON SINEK	Portfolio	Reprint edition (December 27, 2011)
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016
7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020

SEMESTER S1/S2 HEALTH AND WELLNESS

(Common to all Groups)

Course Code	UCPWT127	CIE Marks	50
Teaching Hours/Week(L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	Theory and Practical

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- 3. To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- 5. To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Human Body Systems related to Physical activity and its functions:	
	Respiratory System - Cardiovascular System .	
	Musculoskeletal System and the Major Muscle groups of the HumanBody.	
	Quantifying Physical Activity Energy Expenditure and Metabolic equivalent	
	of task (MET)	4
1	Exercise Continuum: Light-intensity physical activity, Moderate -intensity	4
	physical activity, Vigorous -intensity physical activity.	
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic	

2	Physical Activity, Exercise and Health-Related Physical Fitness. FITT principle to design an Exercise programme Components of Health-related Physical Fitness: - Cardiorespiratory Fitness- Muscular strength- Muscular endurance- Flexibility- Body composition. Concept of Health and Wellness: Health and wellness differentiation, Factors affecting health and wellness. Mental health and Factors affecting mental health. Sports and Socialization: Sports and character building - Leadership through Physical Activity and Sports Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet Carbohydrate & the Glycemic Index Animal & Plant - based Proteins and their Effects on Human Health	2
	Dietary Fats & their Effects on Human Health Essential Vitamins and Minerals	
3	Lifestyle management strategies to prevent / manage common hypokinetic diseases and disorders - Obesity - Cardiovascular diseases (e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low back pain, Kyphosis, lordosis, flat foot, Knock knee) Meaning, Aims and objectives of yoga - Classification andimportance of of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types - Active Lifestyle and Stress Management Through Yoga Understanding on substance abuse and addiction - Psychoactive substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative - Cocaine -Other stimulants, including caffeine -Hallucinogens - Tobacco -Volatile solvents.	4

4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	2	
---	---	---	--

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinarycontext. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases.
 Processedfoods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method(CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the different human body systems and describe varioustypes of physical activities along with methods to measure and quantify these activities.	K2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	К2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	К2
CO4	Explain the basics of first aid and describe common sports injuries	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3				0		3		3				2
CO4				2		3						2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Foundations of Nutrition	Bhavana Sabarwal	Common wealth Publishers	1999
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fit to be Well EssentialConcept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018		
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022		
3	Substance Use Disorders.Manual for Physicians.	Lal, R., & Ambekar,A	National Drug Dependence TreatmentCentre, New Delhi	2005		
4	The exercise health connection-how to reduceyour risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998		
5	ACSM's resource manual for guidelines for exercisetesting and prescription.	Lippincott Williams& Wilkins.	American College ofSports Medicine.	2012		
6	Exercise Physiology: energy, nutrition and humanperformance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010		

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.
Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20

	The Assignment / Presentation faculty handling the class will use the tests
	from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set
	forth by FIT India. Measurements will be taken for all the tests of the FIT
	India Fitness Protocol and the evaluation will be based on the benchmark
	score received for the following tests:
	1. V Sit Reach Test
Activity Evaluation	2. Partial Curl Up - 30 seconds
	3. Push Ups (Male) and Modified Push Up (Female)
	4. Two (2) Km Run/Walk
	Students who achieve a total benchmark score of 8 across the
	aforementioned 4 tests will be awarded pass marks for activity evaluation.
	Students who score better will be awarded a maximum mark of 20.
	Physically challenged and medically unfit students can opt for an
Activity Evaluation -	objective test to demonstrate their knowledge of the subjects taught.
Special Circumstances	Based on their performance in the objective test, they will be awarded
Circumstances	marks out of 20.
	Students who enrolled themselves in the NCC during the course period
	(between the start and end dates of the program) and attended 5 college
Activity Evaluation - Special Considerations	level parades will be awarded pass marks for activity evaluation. Students
NCC	who attend more parades will be eligible for a maximum mark of 20 based
	on their parade attendance.

Tests to evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on themeasuring line.

- **3.** With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- **4.** After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- **2.** With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- **3.** Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- **2.** The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- **3.** The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female

How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- **3.** This action is repeated, and the test continues until exhaustion, or until they can do no more inrhythm or have reached the target number of push-ups.
- **4.** For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- **2.** The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- **3.** Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes: Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes: Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION

(Common to all Branches)

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- To foster self-awareness and personal growth, enhance communication and interpersonal
 connection skills, promote effective participation in groups and teams, develop critical thinking,
 problem-solving, and decision-making skills, and cultivate the ability to exercise emotional
 intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise
- 3. To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed
 in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials
 generated from the activities. Students should also keep a journal related to the activities
 undertaken.

- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction	L	1	G	-	Connecting with	
	among the group members					group members	
1.2	Familiarizing the activities and prepara-	L	1	G	_	• Time manage-	
	tion of the time plan for the activities					ment - Gantt Chart	
1.3	Preparation of Gantt chart based on the	SS	1	G	2	Chart	
	time plan						
2.1							
2.1	Take an online personality development	SS	1	I	2	• Self-awareness	CO1
2.2	test, self reflect and report		•	1		Writing	
2.2	Role-storming exercise 1:						
	Students assume 2 different roles given below and write about their						
	• Strengths,						
	• Areas for improvement,	L	1	I	2		
	• Concerns,		-	_	_	•Goal setting -	
	• Areas in which he/she hesitates to take					Identification of	COL
	advice,					skills and setting goal	CO1
	• Goals/Expectations,					•Self-awareness	
	from the point of view of the following as-					•Discussion in	
	sumed roles					groups •Group work-	
	i) their parent/guardian/mentor					Compiling of	
	ii) their friend/sibling/cousin					ideas	
2.3	Role-storming exercise 2:					Mind mapping	
	Students assume the role of their teacher						
	and write about the	SS	1	I	2		CO1
	• Skills required as a B.Tech graduate						
	• Attitudes, habits, approaches required						

B. Tech 2024 -S1/S2

	and activities to be practised during their				1	5.1ecn 2024 –31/32	
	•						
	B.Tech years, in order to achieve the set						
	goals						
2.4	Discuss the skills identified through role						
	storming exercise by each one within	L	1	G	2		CO1
	their own group and improvise the list of						COI
	skills						
2.5	Prepare a mind map based on the role-	~~	_	_		-	
	storming exercise and exhibit/present it	SS	2	G	2		CO1
	in class						
3	Prepare a presentation on instances of						
	empathy they have observed in their	L	2 to 4	I	2	• Empathy	CO2
	own life or in other's life						
4.1	Each student connects and networks					Workplace	
	with a minimum of 3 professionals from	00	2	T		awareness	
	industry/public sector organiza-	SS	3	I	2	• Listening	
	tions/other agencies/NGOs /academia					• Communication - interacting with	
	(atleast 1 through LinkedIn)					people	
4.2	Interact with them to understand their					Networking	
	workplace details including					through various	
	workplace skills required					media including LinkedIn	
	• their work experience	SS	3	I	4	Discussion in	
	• activities they have done to enhance		-	_		groups	
	their employability during their B.Tech					• Report prepara-	CO2
						tion • Creativity	
	years					• Creativity	
	• suggestions on the different activities to					Goal setting - Prep-	
	be done during B.Tech years					aration of action	
	Prepare a documentation of this					plan	
4.3	Discuss the different workplace details &						
	work readiness activities assimilated by	SS	3	G	2		
	each through the interactions within their						CO2
	group and compile the inputs collected by						002
	the individuals						
	Prepare the Minutes of the discussions						
4.4	Report preparation based on the discus-	SS	4	G	3		CO4
	sions						
4.5	Perform a role-play based on the work-	т			4		
	place dynamics assimilated through in-	L	5	G	4		CO3
	teractions and group discussions						
4.6	Identify their own goal and prepare an					1	
	action plan for their undergraduate	SS	5	I	2		CO1
4.6		SS	5	I	2		C

B.Tech 2024 –S1/S2

	journey to achieve the goal					B.1cen 202+ 51/52	
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		CO3
5.5	Prepare a report based on the problem- solving experience	SS	7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self introduction video	SS	8	I	3		CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)	SS	10	G	3	Diversity	CO2, CO5
9	Take online Interview skills develop- ment sessions like robotic interviews; self-reflect and report	SS	10	I	2	Interview skills	CO6
10	Take an online listening test, self reflect and report	SS	11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/G	4		CO4
11.2	Activities to help students identify errors in English language usage	L	9	I/G	2	• English vocabulary	CO4
11.3	Activity to help students identify com- monly mispelled words, commonly mis- pronounced words and confusing words	L	10	I/G	2	English language skillsWritingPresentation	CO4
11.4	Write a self-reflection report on the im- provement in English language commu- nication through this course	SS	12	I	2	Group work Self-reflection	CO4
11.5	Presentation by groups on the						CO4, CO5

B.Tech 2024 -S1/S2

					_		
	experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media platforms Profile building 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1		CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Table 2. Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	Hands-on sessions on day-to-day engineering skills and		Basic practical	3
	a self-reflection report on the experience gained:		engineering	
	Drilling practice using electric hand drilling machines.	24	skills	
	2. Cutting of MS rod and flat using electric hand cutters.			
	3. Filing, finishing and smoothening using electrically operated hand grinders.			
	4. MS rod cutting using Hack saw by holding the work in bench wise.			
	Study and handling different types of measuring instruments.			
	6. Welding of MS, SS work pieces.			
	7. Pipe bending practice (PVC and GI).			
	8. Water tap fitting.			
	9. Water taps rubber seal changing practice.			
	10. Union and valves connection practice in pipes.			
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's	K5
	potential & capabilities, set goals and develop plans to accomplish tasks	IX.5
	Develop the ability to communicate and connect with others, participate in	
CO2	groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	K5
	Develop listening, reading, writing & speaking skills, ability to comprehend	
CO4	& successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
	Develop the ability to create effective presentations through audio-visual	
CO5	mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6
COC	Initiate profile-building exercises in line with the professional requirements,	
CO6	and start networking with professionals/academicians	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004

SEMESTER S2

IT WORKSHOP

(Common to Group A&B)

Course Code	GXESL208	CIE Marks	50
Teaching Hours/Week(L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To provide a basic understanding about computer hardware, software, and computer network.
- 2. To familiarize the learner with the web development process using HTML, CSS, and Javascript.

Details of Experiments

Expt.	Experiment
No	(Minimum 10 Experiments)
1	Practice Computer Hardware – Familiarization CPU Box, Motherboard, CPU & Chip-set, Interface cards, Card slots, Hard disk, Cables, SMPS, NIC, Various ports, etc. Computer Peripherals - I/O Devices. Storage devices, Interface cards – Buses – Firmware
2	Familiarization of Boot process
3	Familiarizing installation of Linux and Windows operating systems
4	Familiarizing basic Unix/Linux commands - ls, mkdir, cp, mv, grep, rmdir, chmod, useradd, passwd, history, dmesg, cpuinfo, uname, du, time, write, fdisk
5	Familiarizing networking hardware - RJ45, UTP, fibre, switch, NIC, router, Wireless Access Point (WAP), modem
6	Familiarizing basic networking commands - ifconfig, ping, traceroute, nslookup, ssh, scp, telnet, ftp
7	View network traffic using Wireshark/Packet tracer

8	Familiarizing the steps how to configure and establishing a network connecting
9	Shell programming in Linux(bash)
10	Create a web page and deploy on a local web server.
11	Use Javascript to validate forms.
12	Create an image slider using HTML, CSS, and JavaScript. Allow users to navigate between images using previous and next buttons.
13	Familiarisation of LaTeX - Basic only
14	Familiarisation of Development Environments - Visual studio code, Sublime Text, Atom
15	Introducing Repositories - Git / Bitbucket

Course Assessment Method (CIE: 50 Marks, ESE: 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination onlyupon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with the fundamental hardware components of a computer and how to interface them with software systems.	К3
CO2	Make use of the command line of Linux operating system and shell programming.	КЗ
CO3	Experiment with the data network communication scenarios using Wireshark.	К3
CO4	Develop basic websites using HTML, CSS & JavaScript and manage the versions.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to ComputerScience	G. Michael Schneider, Judith Gersting	Cengage	2/e, 2020			
2	LINUX for Developers: Jumpstart Your LinuxProgramming Skills	William Rothwell		1/e, 2018			
3	HTML, CSS, and JavaScript -All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	1/e, 2018			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	The Architecture of Computer Hardware, Systems						
1	Software, & Networking: An Information	Irv Englander	Wiley	5/e, 2014			
	Technology Approach		,	,			
	Mastering Git: Attain expertlevel proficiency	7 1 1 N 1 1 1 .	- 1	1/ 2016			
2	with Git forenhanced productivity and efficient	Jakub Narębski	Packt	1/e, 2016			
	collaboration						
3	Web Design with HTML, CSS, JavaScript, and	Jon Duckett	Wiley	1/e, 2014			
3	Jquery.	John Duckett	TT IICy	1/6, 2014			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://overthewire.org/wargames/bandit/				
2	https://www.w3schools.com/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principlesduring a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, andrecord are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to theexperiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of thesubject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

PROGRAMME CORE 1

SEMESTER S2

DISCRETE MATHEMATICS

(Common to all Computer Science and its allied branches)

Course Code	PCCST205	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the ability to analyze and solve problems using discrete mathematical techniques.
- 2. To give a deeper understanding of mathematical logic, set theory, and proof techniques such as direct proofs, proof by contradiction, and mathematical induction.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Sets, Functions, and Relations Sets and Subsets, Venn Diagrams, Set Operations, Set Identities, Generalized Unions and Intersections, The Principle of Inclusion-Exclusion (Basic and Generalized versions), and applications. Function definition, Injections, Surjections and Bijections, Inverse Functions, and Compositions of Functions, Cardinality of Sets, Cantor diagonalization argument Relations and Their Properties, Composition of relations, n-ary Relations, Representing Relations Using Matrices, Equivalence Relations, Equivalence Classes, Partial Orderings, Hasse Diagrams, Maximal and Minimal Elements, Lattices	11

	Mathematical logic and proofs		
	Propositional Logic, Applications of Propositional Logic, Propositional		
	Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of		
	Inference	11	1
2	Introduction to Proofs, Methods of Proving Theorems - Direct proof, Indirect proof (Proof by Contraposition), Proof by Contradiction, Proof by counter		
	examples, The Pigeonhole Principle.		
	Induction and Recurrences		
	Mathematical Induction, Weak and Strong induction		
3	Recursive (Inductive) definitions and recurrence relations, Modeling with	11	1
	Recurrence Relations, Solving Linear Recurrence Relations (homogeneous		
	and nonhomogeneous), Generating Functions, Using Generating Functionsto		
	Solve Recurrence Relations.		
4	Group theory		
4	Groups - Definition, Examples, and Elementary Properties, Abelian group,	11	1
	Permutation group, Subgroup, Homomorphisms, Isomorphisms, and Cyclic		
	Groups, Cosets and Lagrange's Theorem		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions.

Part A	Part B	Total
Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Check the validity of predicates in Propositional and Quantified Propositional Logic using truth tables, deductive reasoning and inference theory on Propositional Logic	К3
CO2	Solve counting problems by applying the elementary counting techniques - Rule of Sum, Rule of Product, Permutation, Combination, Binomial Theorem, Pigeonhole Principle and Principle of Inclusion and Exclusion.	К3
CO3	Classify binary relations into various types and illustrate an application for each type of binary relation, in Computer Science.	К2
CO4	Illustrate an application for Partially Ordered Sets and Complete Lattices, in Computer Science	К3
CO5	Explain Generating Functions and solve First Order and Second Order Linear Recurrence Relations with Constant Coefficients	К3
C06	Illustrate the abstract algebraic systems - Semigroups, Monoids, Groups, Homomorphism and Isomorphism of Monoids and Groups.	К2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	3	3								2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2
CO6	3	3	3	3								2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Discrete Mathematics and its Applications	Kenneth H. Rosen, Kamala Krithivasan	McGraw Hill	8/e, 2021		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Schaum's Outline of Discrete Mathematics	Marc Lipson, Seymour Lipschutz	McGraw-Hill	3/e, 2021		
2	Discrete Mathematics	Kenneth A. Ross, Charles R.B. Wright	Pearson	5/e, 2012		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptelvideos.com/lecture.php?id=6033				
2	https://nptelvideos.com/lecture.php?id=6024				
3	https://nptelvideos.com/lecture.php?id=6051				
4	https://nptelvideos.com/lecture.php?id=6058				

SEMESTER S2

DISCRETE MATHEMATICAL STRUCTURES

(INFORMATION TECHNOLOGY)

Course Code	PCITT205	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	A sound background in higher secondary school Mathematics	Course Type	Theory

Course Objectives:

- 1. Students will be able to understand and apply mathematical notations and concepts essential for computing.
- **2.** Students can develop and utilize mathematical reasoning and proof strategies to enhance their analytical thinking and creative problem-solving skills.

SYLLABUS

Module No.	Syllabus Description	ContactHours (44 Hrs)
1	Introduction to Logic: Propositional Logic, Truth tables, Conditional propositions and Logical Equivalence, The laws of Logic, The Principle of Duality, Resolution proofs. Predicates and Quantifiers: Universal quantifier and Existential quantifier, Negation of Quantifiers, The Rule of Universal Specification, The Rule of Universal Generalizations. The implications of Quantifiers.	11
2	Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations, The Binomial Theorem (without proof), Combinations with Repetition, Pigeon Hole Principle, Principle of Inclusion and Exclusion (without proof), Derangements.	11

3	Relations, Functions and Algebraic Structures: Sets, Relations, Functions, Equivalence Relations, Posets and Lattices, HasseDiagrams, Complimented and Distributive lattices, Structured sets for binary operations, Semigroups, Monoids, Groups, Rings, Fields.	12
4	Generating Function: Definitions and Examples, CalculationTechniques, Exponential Generating Function. Recurrence Relations: First-order linear recurrence relations with constant coefficients – homogeneous, non-homogeneous Solution. Second-order linear recurrence relations with constant coefficients, homogeneous, non-homogeneous Solution.	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions			
Part A	Part B	Total	
• 2 Questions from eachmodule.	• Each question carries 9 marks.		
• Total of 8 Questions, each	• Two questions will be given from each module,		
carrying 3 marks	out of which 1 question should be answered.	60	
(8x3 =24marks)	• Each question can have a maximum of 3 sub		
(0A3 24marks)	divisions.		
	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Apply logical reasoning and formal methods to construct and verify logical arguments and proofs involving propositions, truth tables, logical equivalence, and quantifiers.	К3	
CO2	Apply fundamental counting principles, including permutations, combinations, and the pigeonhole principle, to solve problems related to combinatorial analysis and discrete structures.	К3	
CO3	Describe the concepts of sets, relations, and functions, and recognize the properties and structures of algebraic systems such as lattices, semigroups, monoids, groups, rings, and fields.	К2	
CO4	Explain the concepts of sets, relations, functions, algebraic structures such as groups and fields, and the methods for solving first and second-order linear recurrence relations using generating functions and other techniques.	К2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	-	-	2
CO2	3	2	2	1	-	-	-	-	-	-	-	2
CO3	3	2	2	1	-	-	-	-	-	-	-	2
CO4	3	2	2	1	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Discrete and Combinatorial Mathematics: An Applied Introduction	Ralph P. Grimaldi, B. V. Ramana	Pearson	5 th Edition, 2007.		
2	Discrete Mathematics with Graph Theory and Combinatorics.	T Veerarajan	Tata McGraw Hill	1 st Edition, 2007		

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Discrete Mathematics and its Applications	K. H. Rosen	McGraw Hill	7 th Edition, 2012	
2	Discrete Mathematical Structures	D. S. Chandrasekharaiah	PRISM Books	4 th Edition, 2012	
3	Discrete Mathematical Structures with Application to Computer Science	J. P. Tremblay and R. Manohar	Tata McGraw Hill	2 nd Edition, 2002	
4	Discrete Mathematics for Computer Scientists & Mathematicians	Joe L. Mott, Abraham Kandel and Theodore P. Baker	Pearson Education	2nd Edition, 2015	

	Video Links (NPTEL, SWAYAM)					
Module No.	2 12					
1	https://nptel.ac.in/courses/106106094					
2	https://nptel.ac.in/courses/106103205					
3	https://nptel.ac.in/courses/106106094					
4	https://nptel.ac.in/courses/106103205					